

Domain of  $f = \text{range of } f^{-1}$ Domain of  $f^{-1} = \text{range of } f$ Figure 5.10

### **Definition of Inverse Function**

A function g is the **inverse function** of the function f when

f(g(x)) = x for each x in the domain of g

and

g(f(x)) = x for each x in the domain of f.

The function g is denoted by  $f^{-1}$  (read "f inverse").

# **Verifying Inverse Functions**

Show that the functions are inverse functions of each other.

$$f(x) = 2x^3 - 1$$
 and  $g(x) = \sqrt[3]{\frac{x+1}{2}}$ 

#### THEOREM 5.6 Reflective Property of Inverse Functions

The graph of f contains the point (a, b) if and only if the graph of  $f^{-1}$  contains the point (b, a).



The graph of  $f^{-1}$  is a reflection of the graph of f in the line y = x. Figure 5.12



If a horizontal line intersects the graph of f twice, then f is not one-to-one.

Figure 5.13

#### THEOREM 5.7 The Existence of an Inverse Function

- 1. A function has an inverse function if and only if it is one-to-one.
- 2. If f is strictly monotonic on its entire domain, then it is one-to-one and therefore has an inverse function.

#### **GUIDELINES FOR FINDING AN INVERSE FUNCTION**

- 1. Use Theorem 5.7 to determine whether the function y = f(x) has an inverse function.
- 2. Solve for x as a function of y:  $x = g(y) = f^{-1}(y)$ .
- 3. Interchange x and y. The resulting equation is  $y = f^{-1}(x)$ .
- **4.** Define the domain of  $f^{-1}$  as the range of f.
- 5. Verify that  $f(f^{-1}(x)) = x$  and  $f^{-1}(f(x)) = x$ .

# Finding an Inverse Function

Find the inverse function of  $f(x) = \sqrt{2x - 3}$ .



The domain of  $f^{-1}$ ,  $[0, \infty)$ , is the range of f.

Figure 5.15

#### Testing Whether a Function Is One-to-One

See LarsonCalculus.com for an interactive version of this type of example.

Show that the sine function

$$f(x) = \sin x$$

is not one-to-one on the entire real number line. Then show that  $[-\pi/2, \pi/2]$  is the largest interval, centered at the origin, on which f is strictly monotonic.



f is one-to-one on the interval  $[-\pi/2, \pi/2]$ .

Figure 5.16

## THEOREM 5.8 Continuity and Differentiability of Inverse Functions

Let f be a function whose domain is an interval I. If f has an inverse function, then the following statements are true.

- 1. If f is continuous on its domain, then  $f^{-1}$  is continuous on its domain.
- **2.** If f is increasing on its domain, then  $f^{-1}$  is increasing on its domain.
- **3.** If f is decreasing on its domain, then  $f^{-1}$  is decreasing on its domain.
- **4.** If f is differentiable on an interval containing c and  $f'(c) \neq 0$ , then  $f^{-1}$  is differentiable at f(c).

A proof of this theorem is given in Appendix A.

See LarsonCalculus.com for Bruce Edwards's video of this proof.

#### THEOREM 5.9 The Derivative of an Inverse Function

Let f be a function that is differentiable on an interval I. If f has an inverse function g, then g is differentiable at any x for which  $f'(g(x)) \neq 0$ . Moreover,

$$g'(x) = \frac{1}{f'(g(x))}, \quad f'(g(x)) \neq 0.$$

A proof of this theorem is given in Appendix A.

See LarsonCalculus.com for Bruce Edwards's video of this proof.

#### **EXAMPLE 5** Evaluating the Derivative of an Inverse Function

Let  $f(x) = \frac{1}{4}x^3 + x - 1$ . (a) What is the value of  $f^{-1}(x)$  when x = 3? (b) What is the value of  $(f^{-1})'(x)$  when x = 3?

## **Graphs of Inverse Functions Have Reciprocal Slopes**

Let  $f(x) = x^2$  (for  $x \ge 0$ ), and let  $f^{-1}(x) = \sqrt{x}$ . Show that the slopes of the graphs of f and  $f^{-1}$  are reciprocals at each of the following points.

- **a.** (2,4) and (4,2)
- **b.** (3, 9) and (9, 3)



The graphs of the inverse functions f and  $f^{-1}$  have reciprocal slopes at points (a, b) and (b, a).

Figure 5.17



(a) Because f is increasing over its entire domain, it has an inverse function.



(b) Because f is not one-to-one, it does not have an inverse function.

Figure 5.14