

When Δx is small, $\Delta y = f(c + \Delta x) - f(c)$ is approximated by $f'(c)\Delta x$.

Figure 3.66

EXAMPLE 7

Approximating Function Values

Use differentials to approximate $\sqrt{16.5}$.

Definition of Total Differential

If z = f(x, y) and Δx and Δy are increments of x and y, then the **differentials** of the independent variables x and y are

$$dx = \Delta x$$
 and $dy = \Delta y$

and the total differential of the dependent variable z is

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = f_x(x, y) dx + f_y(x, y) dy.$$

EXAMPLE 1

Finding the Total Differential

Find the total differential for each function.

a.
$$z = 2x \sin y - 3x^2y^2$$
 b. $w = x^2 + y^2 + z^2$

b.
$$w = x^2 + y^2 + z^2$$

Definition of Differentiability

A function f given by z = f(x, y) is **differentiable** at (x_0, y_0) if Δz can be written in the form

$$\Delta z = f_x(x_0, y_0) \,\Delta x + f_y(x_0, y_0) \,\Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y$$

where both ε_1 and $\varepsilon_2 \rightarrow 0$ as

$$(\Delta x, \Delta y) \rightarrow (0, 0).$$

The function f is differentiable in a region R if it is differentiable at each point in R.

EXAMPLE 2

Showing that a Function Is Differentiable

Show that the function

$$f(x, y) = x^2 + 3y$$

is differentiable at every point in the plane.

THEOREM 13.4 Sufficient Condition for Differentiability

If f is a function of x and y, where f_x and f_y are continuous in an open region R, then f is differentiable on R.

A proof of Theorem 13.4 is given in Appendix A.

See LarsonCalculus.com for Bruce Edwards's video of this proof.

EXAMPLE 3 Using a Differential as an Approximation

See LarsonCalculus.com for an interactive version of this type of example.

Use the differential dz to approximate the change in $z = \sqrt{4 - x^2 - y^2}$ as (x, y) moves from the point (1, 1) to the point (1.01, 0.97). Compare this approximation with the exact change in z.

THEOREM 13.6 Chain Rule: One Independent Variable

Let w = f(x, y), where f is a differentiable function of x and y. If x = g(t) and y = h(t), where g and h are differentiable functions of t, then w is a differentiable function of t, and

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt}.$$

The Chain Rule is shown schematically in Figure 13.39. A proof of Theorem 13.6 is given in Appendix A.

EXAMPLE 1 Chain Rule: One Independent Variable

Let $w = x^2y - y^2$, where $x = \sin t$ and $y = e^t$. Find dw/dt when t = 0.

EXAMPLE 2 An Application of a Chain Rule to Related Rates

Two objects are traveling in elliptical paths given by the following parametric equations.

$$x_1 = 4 \cos t$$
 and $y_1 = 2 \sin t$ First object
 $x_2 = 2 \sin 2t$ and $y_2 = 3 \cos 2t$ Second object

At what rate is the distance between the two objects changing when $t = \pi$?

$$\frac{\partial s}{\partial x_1} = \frac{-(x_2 - x_1)}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} = \frac{\partial s}{\partial y_1} = \frac{-(y_2 - y_1)}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} = \frac{\partial s}{\partial x_2} = \frac{(x_2 - x_1)}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} = \frac{\partial s}{\partial y_2} = \frac{(y_2 - y_1)}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} = \frac{\partial s}{\partial y_2} = \frac{(y_2 - y_1)}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} = \frac{\partial s}{\partial y_2} = \frac{(y_2 - y_1)}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} = \frac{\partial s}{\partial y_2} = \frac{(y_2 - y_1)}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} = \frac{\partial s}{\partial y_2} = \frac{(y_2 - y_1)}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} = \frac{\partial s}{\partial y_2} = \frac{(y_2 - y_1)}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} = \frac{\partial s}{\partial y_2} = \frac{(y_2 - y_1)}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} = \frac{\partial s}{\partial y_2} = \frac{(y_2 - y_1)}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} = \frac{\partial s}{\partial y_2} = \frac{(y_2 - y_1)}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} = \frac{\partial s}{\partial y_2} = \frac{(y_2 - y_1)}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} = \frac{\partial s}{\partial y_2} = \frac{(y_2 - y_1)}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} = \frac{\partial s}{\partial y_2} = \frac{(y_2 - y_1)}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} = \frac{\partial s}{\partial y_2} = \frac{\partial s}{\partial y_2}$$

$$\frac{ds}{dt} = \frac{\partial s}{\partial x_1} \frac{dx_1}{dt} + \frac{\partial s}{\partial y_1} \frac{dy_1}{dt} + \frac{\partial s}{\partial x_2} \frac{dx_2}{dt} + \frac{\partial s}{\partial y_2} \frac{dy_2}{dt}$$

THEOREM 13.7 Chain Rule: Two Independent Variables

Let w = f(x, y), where f is a differentiable function of x and y. If x = g(s, t) and y = h(s, t) such that the first partials $\partial x/\partial s$, $\partial x/\partial t$, $\partial y/\partial s$, and $\partial y/\partial t$ all exist, then $\partial w/\partial s$ and $\partial w/\partial t$ exist and are given by

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s}$$

and

$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial t}.$$

The Chain Rule is shown schematically in Figure 13.41.

EXAMPLE 3

Finding Partial Derivatives by Substitution

Find $\partial w/\partial s$ and $\partial w/\partial t$ for w = 2xy, where $x = s^2 + t^2$ and y = s/t.

The Chain Rule with Two Independent

•••• See LarsonCalculus.com for an interactive version of this type of exam

Use the Chain Rule to find $\partial w/\partial s$ and $\partial w/\partial t$ for

$$w = 2xy$$

where $x = s^2 + t^2$ and y = s/t.

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s}$$

$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial t}$$

THEOREM 13.8 Chain Rule: Implicit Differentiation

If the equation F(x, y) = 0 defines y implicitly as a differentiable function of x, then

$$\frac{dy}{dx} = -\frac{F_x(x, y)}{F_y(x, y)}, \quad F_y(x, y) \neq 0.$$

If the equation F(x, y, z) = 0 defines z implicitly as a differentiable function of x and y, then

$$\frac{\partial z}{\partial x} = -\frac{F_x(x, y, z)}{F_z(x, y, z)} \quad \text{and} \quad \frac{\partial z}{\partial y} = -\frac{F_y(x, y, z)}{F_z(x, y, z)}, \quad F_z(x, y, z) \neq 0.$$

EXAMPLE 5 The Chain Rule for a Function of Three Va

Find $\partial w/\partial s$ and $\partial w/\partial t$ when s=1 and $t=2\pi$ for

$$w = xy + yz + xz$$

where $x = s \cos t$, $y = s \sin t$, and z = t.

EXAMPLE 6

Finding a Derivative Implicitly

Find dy/dx for

$$y^3 + y^2 - 5y - x^2 + 4 = 0$$
.

EXAMPLE 7

Finding Partial Derivatives Implicitly

Find $\partial z/\partial x$ and $\partial z/\partial y$ for

$$3x^2z - x^2y^2 + 2z^3 + 3yz - 5 = 0.$$