

Definition of Double Integral

If f is defined on a closed, bounded region R in the xy-plane, then the **double** integral of f over R is

$$\int_{R} \int f(x, y) dA = \lim_{\|\Delta\| \to 0} \sum_{i=1}^{n} f(x_i, y_i) \Delta A_i$$

provided the limit exists. If the limit exists, then f is **integrable** over R.

Volume of a Solid Region

If f is integrable over a plane region R and $f(x, y) \ge 0$ for all (x, y) in R, then the volume of the solid region that lies above R and below the graph of f is

$$V = \int_{R} \int f(x, y) \, dA.$$

THEOREM 14.1 Properties of Double Integrals

Let f and g be continuous over a closed, bounded plane region R, and let c be a constant.

1.
$$\int_{R} \int cf(x, y) dA = c \int_{R} \int f(x, y) dA$$

2. $\int_{R} \int [f(x, y) \pm g(x, y)] dA = \int_{R} \int f(x, y) dA \pm \int_{R} \int g(x, y) dA$

3.
$$\int_{R} \int f(x, y) dA \ge 0$$
, if $f(x, y) \ge 0$

4.
$$\int_{R} \int f(x, y) dA \ge \int_{R} \int g(x, y) dA, \quad \text{if } f(x, y) \ge g(x, y)$$

5.
$$\int_{R} \int f(x, y) dA = \int_{R_{1}} \int f(x, y) dA + \int_{R_{2}} \int f(x, y) dA, \text{ where } R \text{ is the union of two nonoverlapping subregions } R_{1} \text{ and } R_{2}.$$

THEOREM 14.2 Fubini's Theorem

Let f be continuous on a plane region R.

1. If R is defined by $a \le x \le b$ and $g_1(x) \le y \le g_2(x)$, where g_1 and g_2 are continuous on [a, b], then

$$\iint_{R} f(x, y) dA = \int_{a}^{b} \int_{g_{a}(x)}^{g_{2}(x)} f(x, y) dy dx.$$

2. If R is defined by $c \le y \le d$ and $h_1(y) \le x \le h_2(y)$, where h_1 and h_2 are continuous on [c, d], then

$$\int_{R} \int f(x, y) \ dA = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) \ dx \ dy.$$

EXAMPLE 2

Evaluating a Double Integral

Evaluate

$$\int_{R} \int \left(1 - \frac{1}{2}x^2 - \frac{1}{2}y^2\right) dA$$

where R is the region given by

$$0 \le x \le 1, \quad 0 \le y \le 1.$$

EXAMPLE 3 Finding Volume by a Double Integral

Find the volume of the solid region bounded by the paraboloid $z = 4 - x^2 - 2y^2$ and the xy-plane, as shown in Figure 14.17(a).

Comparing Different Orders of Integration

•••• See LarsonCalculus.com for an interactive version of this type of example.

Find the volume of the solid region bounded by the surface

$$f(x, y) = e^{-x^2}$$
 Surface

and the planes z = 0, y = 0, y = x, and x = 1, as shown in Figure 14.18.

EXAMPLE 5

Volume of a Region Bounded by Two Surfaces

Find the volume of the solid region bounded above by the paraboloid

$$z = 1 - x^2 - y^2$$

Paraboloid

and below by the plane

$$z = 1 - y$$

Plane

as shown in Figure 14.20.

Average Value of a Function

Recall from Section 4.4 that for a function f in one variable, the average value of f on the integral f is f. the interval [a, b] is

$$\frac{1}{b-a} \int_{a}^{b} f(x) \, dx.$$

Given a function f in two variables, you can find the average value of f over the plane region R as shown in the following definition.

Definition of the Average Value of a Function Over a Region

If f is integrable over the plane region R, then the average value of f over R is

Average value =
$$\frac{1}{A} \int_{R} \int f(x, y) dA$$

where A is the area of R.

EXAMPLE 6

Finding the Average Value of a Function

Find the average value of

$$f(x,y) = \frac{1}{2}xy$$

over the plane region R, where R is a rectangle with vertices

$$(0, 0), (4, 0), (4, 3),$$
 and $(0, 3).$