Definition of a Plane Curve

If f and g are continuous functions of t on an interval I, then the equations

$$x = f(t)$$
 and $y = g(t)$

are parametric equations and t is the parameter. The set of points (x, y)obtained as t varies over the interval I is the **graph** of the parametric equations. Taken together, the parametric equations and the graph are a plane curve, denoted by C.

EXAMPLE 1 Sketching a Curve

Sketch the curve described by the parametric equations

$$x = f(t) = t^2 - 4$$

and

$$y=g(t)=\frac{t}{2}$$

where $-2 \le t \le 3$.

e parametric equations yield the points (x, y) nown in the table.

t	-2	-1	0	1	2	3
x	0	-3	-4	-3	0	5
y	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1	<u>3</u> 2

y plotting these points in order of increasing

Parametric equations Solve for
$$t$$
 in one equation. Substitute into second equation. \Rightarrow Rectangular equation $x = t^2 - 4$ $y = t/2$ $x = (2y)^2 - 4$ $x = 4y^2 - 4$

EXAMPLE 2

Adjusting the Domain

Sketch the curve represented by the equations

$$x = \frac{1}{\sqrt{t+1}}$$
 and $y = \frac{t}{t+1}$, $t > -1$

by eliminating the parameter and adjusting the domain of the reequation.

EXAMPLE 3

Using Trigonometry to Eliminate a Parameter

• • • • > See LarsonCalculus.com for an interactive version of this type of example.

Sketch the curve represented by

$$x = 3 \cos \theta$$
 and $y = 4 \sin \theta$, $0 \le \theta \le 2\pi$

by eliminating the parameter and finding the corresponding rectangular equation.

EXAMPLE 4

Finding Parametric Equations for a Given Graph

Find a set of parametric equations that represents the graph of $y = 1 - x^2$, using each of the following parameters.

a.
$$t = x$$
 b. The slope $m = \frac{dy}{dx}$ at the point (x, y)

Figure 10.24

EXAMPLE 5

Parametric Equations for a Cycloid

Determine the curve traced by a point P on the circumference of a circle of radius a rolling along a straight line in a plane. Such a curve is called a **cycloid**.

Figure 10.25

Definition of a Smooth Curve

A curve C represented by x = f(t) and y = g(t) on an interval I is called **smooth** when f' and g' are continuous on I and not simultaneously 0, except possibly at the endpoints of I. The curve C is called **piecewise smooth** when it is smooth on each subinterval of some partition of I.

Projectile Motion In Exercises 79 and 80, consider a projectile launched at a height h feet above the ground and at an angle θ with the horizontal. When the initial velocity is v_0 feet per second, the path of the projectile is modeled by the parametric equations $x = (v_0 \cos \theta)t$ and $y = h + (v_0 \sin \theta)t - 16t^2$.

79. The center field fence in a ballpark is 10 feet high and 400 feet from home plate. The ball is hit 3 feet above the ground. It leaves the bat at an angle of θ degrees with the horizontal at a speed of 100 miles per hour (see figure).

- (a) Write a set of parametric equations for the path of the ball.
- (b) Use a graphing utility to graph the path of the ball when $\theta = 15^{\circ}$. Is the hit a home run?
- (c) Use a graphing utility to graph the path of the ball when $\theta = 23^{\circ}$. Is the hit a home run?
- (d) Find the minimum angle at which the ball must leave the bat in order for the hit to be a home run.

7 | Page