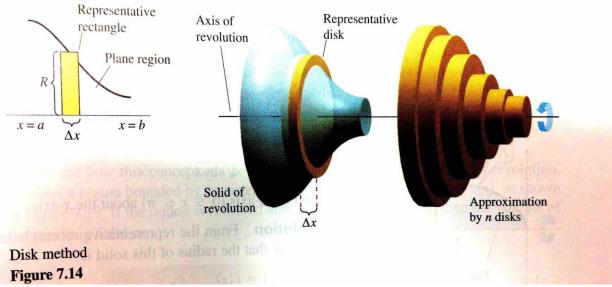


$$\Delta V = \pi R^2 \, \Delta x.$$





THE DISK METHOD

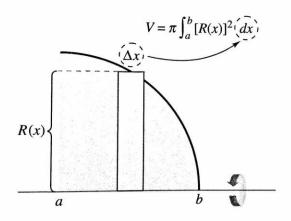
To find the volume of a solid of revolution with the **disk method**, use one of the formulas below. (See Figure 7.15.)

Horizontal Axis of Revolution

Volume =
$$V = \pi \int_a^b [R(x)]^2 dx$$

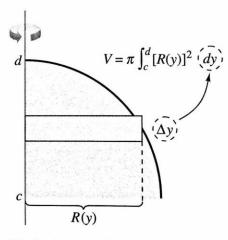
Vertical Axis of Revolution

Volume =
$$V = \pi \int_{c}^{d} [R(y)]^{2} dy$$



Horizontal axis of revolution

Figure 7.15



Vertical axis of revolution

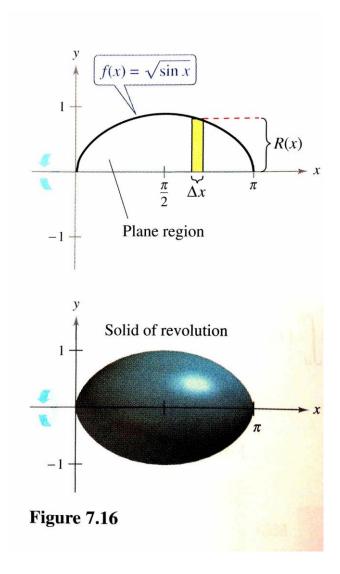
EXAMPLE 1

Using the Disk Method

Find the volume of the solid formed by revolving the region bounded by the graph of

$$f(x) = \sqrt{\sin x}$$

and the x-axis $(0 \le x \le \pi)$ about the x-axis.

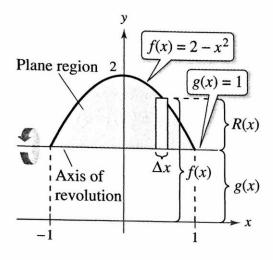


EXAMPLE 2 Using a Line That Is Not a Coordinate Axis

Find the volume of the solid formed by revolving the region bounded by the graphs of

$$f(x) = 2 - x^2$$

and g(x) = 1 about the line y = 1, as shown in Figure 7.17.



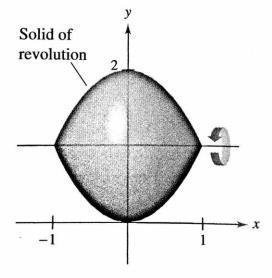
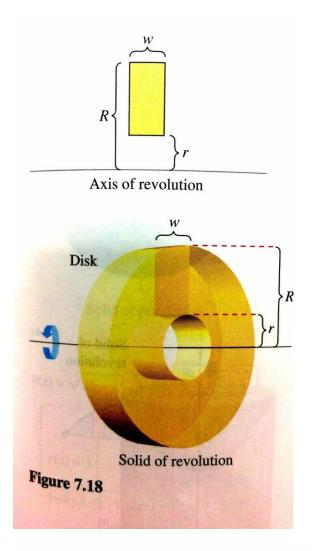
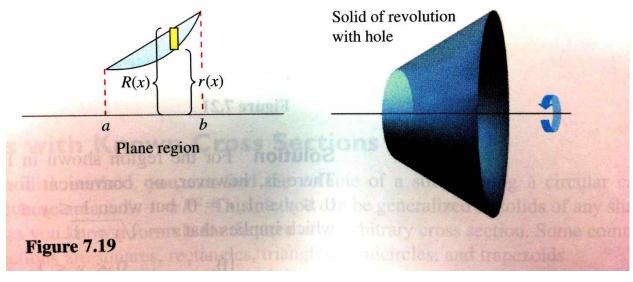


Figure 7.17

$$V = \pi \int_a^b ([R(x)]^2 - [r(x)]^2) dx.$$

Washer method



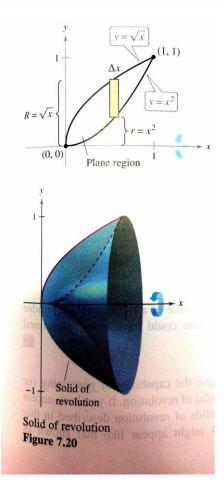


Using the Washer Method

Find the volume of the solid formed by revolving the region bounded by the graphs of

$$y = \sqrt{x}$$
 and $y = x^2$

about the x-axis, as shown in Figure 7.20.



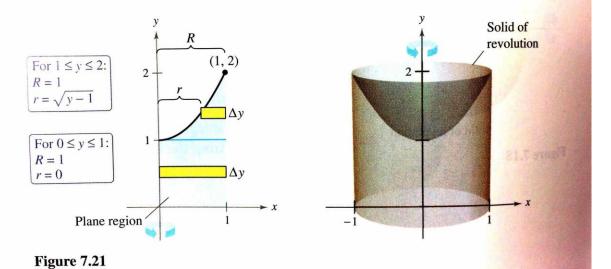
compute the volume.

EXAMPLE 4 Integrating with Respect to y, Two-Integral Case

Find the volume of the solid formed by revolving the region bounded by the graphs of

$$y = x^2 + 1$$
, $y = 0$, $x = 0$, and $x = 1$

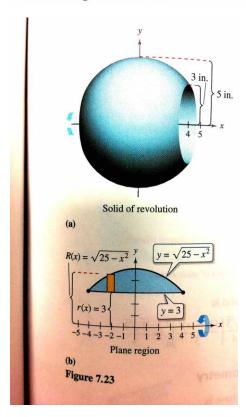
about the y-axis, as shown in Figure 7.21.



Manufacturing

See LarsonCalculus.com for an interactive version of this type of example.

A manufacturer drills a hole through the center of a metal sphere of radius 5 inches, as shown in Figure 7.23(a). The hole has a radius of 3 inches. What is the volume of the resulting metal ring?



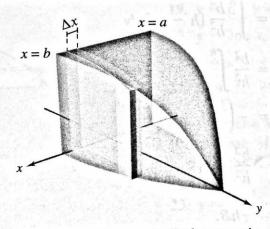
VOLUMES OF SOLIDS WITH KNOWN CROSS SECTIONS

1. For cross sections of area A(x) taken perpendicular to the x-axis,

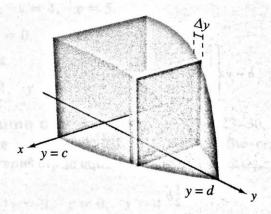
Volume =
$$\int_a^b A(x) dx$$
. See Figure 7.24(a).

2. For cross sections of area A(y) taken perpendicular to the y-axis,

Volume =
$$\int_{c}^{d} A(y) dy$$
. See Figure 7.24(b).



(a) Cross sections perpendicular to x-axis **Figure 7.24**



(b) Cross sections perpendicular to y-axis

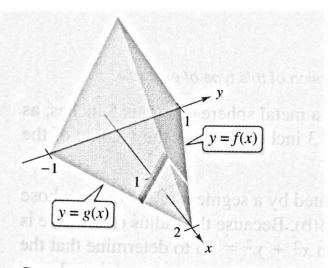
EXAMPLE 6

Triangular Cross Sections

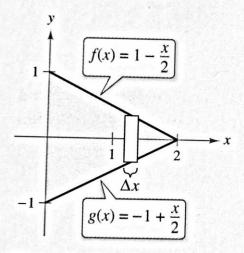
Find the volume of the solid shown in Figure 7.25. The base of the solid is the region bounded by the lines

$$f(x) = 1 - \frac{x}{2}$$
, $g(x) = -1 + \frac{x}{2}$, and $x = 0$.

The cross sections perpendicular to the x-axis are equilateral triangles.



Cross sections are equilateral triangles.



Triangular base in *xy*-plane **Figure 7.25**

EXAMPLE 7

An Application to Geometry

Prove that the volume of a pyramid with a square base is

where h is the height of the pyramid and B is the area of the base

