MTH 174 7.2 Handout

Solids of revolution
Figure 7.12
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THE DISK METHOD

To find the volume of a solid of revolution with the disk method, use one of the
formulas below. (See Figure 7.15.)
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VIS  Using the Disk Method
Find the volume of the solid formed by revolving the region bounded by the graph of

f(x) = sinx

and the x-axis (0 < x < ) about the x-axis.

Foa= o]

.V

SRR o
>
=

\

Solid of revolution

lane region

Figure 7.16



MTH 174 7.2 Handout

Using a Line That Is Not a Coordinate Axis

Find the volume of the solid formed by revolving the region bounded by the graphs of
fx) =2—-x2

and g(x) = 1 about the line y = 1, as shown in Figure 7.17.
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Using the Washer Method

Find the volume of the solid formed by revolving the region bounded by the graphs of
y=+x and y=x2

about the x-axis, as shown in Figure 7.20.
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compute e voluine.

EXAMPLE 4 Integrating with Respect to y, Two-Integral Case

Find the volume of the solid formed by revolving the region bounded by the graphs of
yv=x*+1 y=0, x=0, and x=1

about the y-axis, as shown in Figure 7.21.
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BEXANMPLERS ! Manufacturing

« s« > Sce LarsonCalculus.com for an interactive version of this type of example.

(W LS

A manufacturer drills a hole through the center of a metal sphere of radius 5 inches, as
shown in Figure 7.23(a). The hole has a radius of 3 inches. What is the volume of the

resulting metal ring?

Solid of revolution

(a)
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R(x) = /25 — x2
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VOLUMES OF SOLIDS WITH KNOWN CROSS SECTIONS

1. For cross sections of area A(x) taken perpendicular to the x-axis,

b
Volume = J A(x) dx. See Figure 7.24(a).
2. For cross sections of area A(y) taken perpendicular to the y-axis,
d
Volume = J A(y) dy. See Figure 7.24(b).

(a) Cross sections perpendicular to x-axis (b) Cross sections perpendicular to y-axis

Figure 7.24
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Triangular Cross Sections

Find the volume of the solid shown in Figure 7.25. The base of the solid is the region
bounded by the lines

f(x)=1—%, g(x)=—1+%, and x = 0.

The cross sections perpendicular to the x-axis are equilateral triangles.

Cross sections are equilateral triangles.
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An Application to Geometry

Prove that the volume of a pyramid with a square base is

1
= —hB
%4 3h

where £ is the height of the pyramid and B is the area of the bas«

Figure 7.26 1g



