

THEOREM 11.11 Parametric Equations of a Line in Space

A line L parallel to the vector $\mathbf{v} = \langle a, b, c \rangle$ and passing through the point $P(x_1, y_1, z_1)$ is represented by the **parametric equations**

$$x = x_1 + at$$
, $y = y_1 + bt$, and $z = z_1 + ct$.

If the direction numbers a, b, and c are all nonzero, then you can eliminate the parameter t to obtain **symmetric equations** of the line.

$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$$

Symmetric equations

EXAMPLE 1

Finding Parametric and Symmetric Equations

Find parametric and symmetric equations of the line L that passes through the point (1, -2, 4) and is parallel to $\mathbf{v} = \langle 2, 4, -4 \rangle$, as shown in Figure 11.44.

EXAMPLE 2 Parametric Equations of a Line Through Two Points

See LarsonCalculus.com for an interactive version of this type and the points

Find a set of parametric equations of the line that passes through the points (-2, 1, 0) and (1, 3, 5).

THEOREM 11.12 Standard Equation of a Plane in Space

The plane containing the point (x_1, y_1, z_1) and having normal vector

$$\mathbf{n} = \langle a, b, c \rangle$$

can be represented by the standard form of the equation of a plane

$$a(x - x_1) + b(y - y_1) + c(z - z_1) = 0.$$

By regrouping terms, you obtain the general form of the equation of a plane in space.

$$ax + by + cz + d = 0$$

General form of equation of plane

EXAMPLE 3

Finding an Equation of a Plane in Three-Space

Find the general equation of the plane containing the points

$$(2, 1, 1), (0, 4, 1), and (-2, 1, 4).$$

A plane determined by u and v

Figure 11.46

$$\cos \theta = \frac{|\mathbf{n}_1 \cdot \mathbf{n}_2|}{\|\mathbf{n}_1\| \|\mathbf{n}_2\|}.$$

Angle between two planes

Consequently, two planes with normal vectors \mathbf{n}_1 and \mathbf{n}_2 are

- 1. perpendicular when $\mathbf{n}_1 \cdot \mathbf{n}_2 = 0$.
- **2.** parallel when \mathbf{n}_1 is a scalar multiple of \mathbf{n}_2 .

EXAMPLE 4

Finding the Line of Intersection of Two Planes

Find the angle between the two planes

$$x - 2y + z = 0$$
 and $2x + 3y - 2z = 0$.

Then find parametric equations of their line of intersection (see Figure 11.48).

$$\operatorname{proj}_{\mathbf{n}} \overline{PQ}$$

$$D = \|\operatorname{proj}_{\mathbf{n}} \overrightarrow{PQ}\|$$

The distance between a point and a plane

Figure 11.52

THEOREM 11.13 Distance Between a Point and a Plane

The distance between a plane and a point Q (not in the plane) is

$$D = \|\operatorname{proj}_{\mathbf{n}} \overline{PQ}\| = \frac{|\overline{PQ} \cdot \mathbf{n}|}{\|\mathbf{n}\|}$$

where P is a point in the plane and \mathbf{n} is normal to the plane.

$$D = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

EXAMPLE 5 Finding the Distance Between a Point and a Plane

Find the distance between the point Q(1, 5, -4) and the plane 3x - y + 2z = 6.

EXAMPLE 6

Finding the Distance Between Two Parallel Planes

Two parallel planes, 3x - y + 2z - 6 = 0 and 6x - 2y + 4z + 4 = 0, are shown in Figure 11.53. To find the distance between the planes, choose a point in the first plane, such as $(x_0, y_0, z_0) = (2, 0, 0)$. Then, from the second plane, you can determine that a = 6, b = -2, c = 4, and d = 4, and conclude that the distance is

THEOREM 11.14 Distance Between a Point and a Line in Space

The distance between a point Q and a line in space is

$$D = \frac{\|\overrightarrow{PQ} \times \mathbf{u}\|}{\|\mathbf{u}\|}$$

where \mathbf{u} is a direction vector for the line and P is a point on the line.

a line

EXAMPLE 7. Finding the Distance Between a Point and a Line

Find the distance between the point Q(3, -1, 4) and the line

$$x = -2 + 3t$$
, $y = -2t$, and $z = 1 + 4t$.

The distance between a point and a line Figure 11.54

The distance between the point Q and the line is $\sqrt{6} \approx 2.45$.

Figure 11.55