Definition of the Derivative of a Vector-Valued Function The derivative of a vector-valued function ${\bf r}$ is

$$\mathbf{r}'(t) = \lim_{\Delta t \to 0} \frac{\mathbf{r}(t + \Delta t) - \mathbf{r}(t)}{\Delta t}$$

for all t for which the limit exists. If $\mathbf{r}'(t)$ exists, then \mathbf{r} is differentiable at t. If $\mathbf{r}'(t)$ exists for all t in an open interval I, then \mathbf{r} is differentiable on the interval I. Differentiability of vector-valued functions can be extended to closed intervals by considering one-sided limits.

Figure 12.8

THEOREM 12.1 Differentiation of Vector-Valued Functions

- 1. If $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}$, where f and g are differentiable functions of t, then $\mathbf{r}'(t) = f'(t)\mathbf{i} + g'(t)\mathbf{j}$.
- **2.** If $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, where f, g, and h are differentiable functions of t, then

$$\mathbf{r}'(t) = f'(t)\mathbf{i} + g'(t)\mathbf{j} + h'(t)\mathbf{k}$$
. Space

Differentiation of a Vector-Valued Function

See LarsonCalculus.com for an interactive version of this type of example.

For the vector-valued function

$$\mathbf{r}(t) = t\mathbf{i} + (t^2 + 2)\mathbf{j}$$

find $\mathbf{r}'(t)$. Then sketch the plane curve represented by $\mathbf{r}(t)$ and the graphs of $\mathbf{r}(1)$ and $\mathbf{r}'(1)$.

Higher-Order Differentiation

For the vector-valued function

$$\mathbf{r}(t) = \cos t\mathbf{i} + \sin t\mathbf{j} + 2t\mathbf{k}$$

find each of the following.

a.
$$\mathbf{r}'(t)$$

b.
$${\bf r}''(t)$$

c.
$$\mathbf{r}'(t) \cdot \mathbf{r}''(t)$$

d.
$$\mathbf{r}'(t) \times \mathbf{r}''(t)$$

Finding Intervals on Which a Curve Is Smooth

Find the intervals on which the epicycloid C given by

$$\mathbf{r}(t) = (5\cos t - \cos 5t)\mathbf{i} + (5\sin t - \sin 5t)\mathbf{j}, \quad 0 \le t \le 2\pi$$

is smooth.

The epicycloid is not smooth at the points where it intersects the axes.

Figure 12.10

THEOREM 12.2 Properties of the Derivative

Let \mathbf{r} and \mathbf{u} be differentiable vector-valued functions of t, let w be a differentiable real-valued function of t, and let c be a scalar.

1.
$$\frac{d}{dt}[c\mathbf{r}(t)] = c\mathbf{r}'(t)$$

2.
$$\frac{d}{dt}[\mathbf{r}(t) \pm \mathbf{u}(t)] = \mathbf{r}'(t) \pm \mathbf{u}'(t)$$

3.
$$\frac{d}{dt} [w(t)\mathbf{r}(t)] = w(t)\mathbf{r}'(t) + w'(t)\mathbf{r}(t)$$

4.
$$\frac{d}{dt}[\mathbf{r}(t) \cdot \mathbf{u}(t)] = \mathbf{r}(t) \cdot \mathbf{u}'(t) + \mathbf{r}'(t) \cdot \mathbf{u}(t)$$

5.
$$\frac{d}{dt}[\mathbf{r}(t) \times \mathbf{u}(t)] = \mathbf{r}(t) \times \mathbf{u}'(t) + \mathbf{r}'(t) \times \mathbf{u}(t)$$

6.
$$\frac{d}{dt}[\mathbf{r}(w(t))] = \mathbf{r}'(w(t))w'(t)$$

7. If
$$\mathbf{r}(t) \cdot \mathbf{r}(t) = c$$
, then $\mathbf{r}(t) \cdot \mathbf{r}'(t) = 0$.

Using Properties of the Derivative

For
$$\mathbf{r}(t) = \frac{1}{t}\mathbf{i} - \mathbf{j} + \ln t\mathbf{k}$$
 and $\mathbf{u}(t) = t^2\mathbf{i} - 2t\mathbf{j} + \mathbf{k}$, find

a.
$$\frac{d}{dt} [\mathbf{r}(t) \cdot \mathbf{u}(t)]$$
 and **b.** $\frac{d}{dt} [\mathbf{u}(t) \times \mathbf{u}'(t)].$

Definition of Integration of Vector-Valued Functions

1. If $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}$, where f and g are continuous on [a, b], then the indefinite integral (antiderivative) of \mathbf{r} is

$$\int \mathbf{r}(t) dt = \left[\int f(t) dt \right] \mathbf{i} + \left[\int g(t) dt \right] \mathbf{j}$$

Plane

and its **definite integral** over the interval $a \le t \le b$ is

$$\int_{a}^{b} \mathbf{r}(t) dt = \left[\int_{a}^{b} f(t) dt \right] \mathbf{i} + \left[\int_{a}^{b} g(t) dt \right] \mathbf{j}.$$

2. If $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, where f, g, and h are continuous on [a, b], then the **indefinite integral (antiderivative)** of \mathbf{r} is

$$\int \mathbf{r}(t) dt = \left[\int f(t) dt \right] \mathbf{i} + \left[\int g(t) dt \right] \mathbf{j} + \left[\int h(t) dt \right] \mathbf{k}$$
 Space

and its **definite integral** over the interval $a \le t \le b$ is

$$\int_{a}^{b} \mathbf{r}(t) dt = \left[\int_{a}^{b} f(t) dt \right] \mathbf{i} + \left[\int_{a}^{b} g(t) dt \right] \mathbf{j} + \left[\int_{a}^{b} h(t) dt \right] \mathbf{k}.$$

Integrating a Vector-Valued Function

Find the indefinite integral

$$\int (t\,\mathbf{i}\,+\,3\mathbf{j})\,dt.$$

EXAMPLE 6

Definite Integral of a Vector-Valued Function

Evaluate the integral

$$\int_0^1 \mathbf{r}(t) dt = \int_0^1 \left(\sqrt[3]{t} \mathbf{i} + \frac{1}{t+1} \mathbf{j} + e^{-t} \mathbf{k} \right) dt.$$

The Antiderivative of a Vector-Valued Function

Find the antiderivative of

$$\mathbf{r}'(t) = \cos 2t\mathbf{i} - 2\sin t\mathbf{j} + \frac{1}{1+t^2}\mathbf{k}$$

that satisfies the initial condition

$$\mathbf{r}(0) = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k}.$$