

THEOREM 10.13 Area in Polar Coordinates

If f is continuous and nonnegative on the interval $[\alpha, \beta]$, $0 < \beta - \alpha \le 2\pi$, then the area of the region bounded by the graph of $r = f(\theta)$ between the radial lines $\theta = \alpha$ and $\theta = \beta$ is

$$A = \frac{1}{2} \int_{\alpha}^{\beta} [f(\theta)]^2 d\theta$$
$$= \frac{1}{2} \int_{\alpha}^{\beta} r^2 d\theta. \qquad 0 < \beta - \alpha \le 2\pi$$

EXAMPLE 1

Finding the Area of a Polar Region

See LarsonCalculus.com for an interactive version of this type of example.

Find the area of one petal of the rose curve $r = 3 \cos 3\theta$.

EXAMPLE 2 Finding the Area Bounded by a Single Curve

Find the area of the region lying between the inner and outer loops of the limaçon $r = 1 - 2 \sin \theta$.

EXAMPLE 3 Finding the Area of a Region Between Two Curves

Find the area of the region common to the two regions bounded by the curves.

$$r = -6\cos\theta$$

Circle

and

$$r=2-2\cos\theta.$$

Cardioid

THEOREM 10.14 Arc Length of a Polar Curve

Let f be a function whose derivative is continuous on an interval $\alpha \leq \theta \leq \beta$. The length of the graph of $r = f(\theta)$ from $\theta = \alpha$ to $\theta = \beta$ is

$$s = \int_{\alpha}^{\beta} \sqrt{[f(\theta)]^2 + [f'(\theta)]^2} d\theta = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta.$$

EXAMPLE 4 Finding the Length of a Polar Curve

Find the length of the arc from $\theta = 0$ to $\theta = 2\pi$ for the cardioid

$$r = f(\theta) = 2 - 2\cos\theta$$

as shown in Figure 10.55.

THEOREM 10.15 Area of a Surface of Revolution

Let f be a function whose derivative is continuous on an interval $\alpha \leq \theta \leq \beta$. The area of the surface formed by revolving the graph of $r = f(\theta)$ from $\theta = \alpha$ to $\theta = \beta$ about the indicated line is as follows.

1.
$$S = 2\pi \int_{\alpha}^{\beta} f(\theta) \sin \theta \sqrt{[f(\theta)]^2 + [f'(\theta)]^2} d\theta$$

About the polar axis

2.
$$S = 2\pi \int_{\alpha}^{\beta} f(\theta) \cos \theta \sqrt{[f(\theta)]^2 + [f'(\theta)]^2} d\theta$$

About the line $\theta = \frac{\pi}{2}$

EXAMPLE 5

Finding the Area of a Surface of Revolution

Find the area of the surface formed by revolving the circle $r = f(\theta) = \cos \theta$ about the line $\theta = \pi/2$, as shown in Figure 10.56.

