Using a Tangent Line Approximation

•••• See LarsonCalculus.com for an interactive version of this type of example.

Find the tangent line approximation of $f(x) = 1 + \sin x$ at the point (0, 1). Then use a table to compare the y-values of the linear function with those of f(x) on an open interval containing x = 0.

Definition of Differentials

Let y = f(x) represent a function that is differentiable on an open interval containing x. The **differential of** x (denoted by dx) is any nonzero real number. The **differential of** y (denoted by dy) is

$$dy = f'(x) dx$$
.

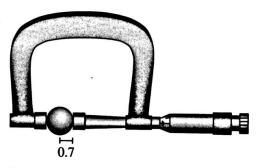
Comparing Δy and dy

Let $y = x^2$. Find dy when x = 1 and dx = 0.01. Compare this value with Δy for x = 1 and $\Delta x = 0.01$.

Comparing Δy and dy In Exercises 7–10, use the information to evaluate and compare Δy and dy.

Function	x-Value	Differential of x

7.
$$y = x^3$$
 $x = 1$ $\Delta x = dx = 0.1$
8. $y = 6 - 2x^2$ $x = -2$ $\Delta x = dx = 0.1$


EXAMPLES

Estimation of Error

The measured radius of a ball bearing is 0.7 inch, as shown in the figure. The measurement is correct to within 0.01 inch. Estimate the propagated error in the volume V of the ball bearing.

Solution The formula for the volume of a sphere is

$$V = \frac{4}{3}\pi r^3$$

Ball bearing with measured radius that is correct to within 0.01 inch.

Differential Formulas

Let u and v be differentiable functions of x.

Constant multiple: d[cu] = c du

Sum or difference: $d[u \pm v] = du \pm dv$

Product: d[uv] = u dv + v du

Quotient: $d\left[\frac{u}{v}\right] = \frac{v \, du - u \, dv}{v^2}$

EXAMPLE 4

Function

a.
$$y = x^2$$

b.
$$y = \sqrt{x}$$

c.
$$y = 2 \sin x$$

$$\mathbf{d.} \ y = x \cos x$$

e.
$$y = \frac{1}{x}$$

Finding the Differential of a Composite Function

$$y = f(x) = \sin 3x$$

Original function

EXAMPLE 6

Finding the Differential of a Composite Function

$$y = f(x) = (x^2 + 1)^{1/2}$$

Original function

$$f(x + \Delta x) \approx f(x) + dy = f(x) + f'(x) dx$$

which is derived from the approximation

$$\Delta y = f(x + \Delta x) - f(x) \approx dy.$$

The key to using this formula is to choose a value for x that makes the easier, as shown in Example 7.

EXAMPLE 7

Approximating Function Values

Use differentials to approximate $\sqrt{16.5}$.

31. Stopping Distance The total stopping distance T of a vehicle is

$$T = 2.5x + 0.5x^2$$

where T is in feet and x is the speed in miles per hour. Approximate the change and percent change in total stopping distance as speed changes from x = 25 to x = 26 miles per hour.

36. Surveying A surveyor standing 50 feet from the base of a large tree measures the angle of elevation to the top of the tree as 71.5°. How accurately must the angle be measured if the percent error in estimating the height of the tree is to be less than 6%?