4.2 Homogeneous Linear Equations: The General Solution

We begin our study of the linear second-order constant-coefficient differential equation

(1)
$$ay'' + by' + cy = f(t) \quad (a \neq 0)$$

with the special case where the function f(t) is zero:

(2)
$$ay'' + by' + cy = 0$$
.

Example 1 Find a pair of solutions to

(4)
$$y'' + 5y' - 6y = 0.$$

Example 2 Solve the initial value problem

(6)
$$y'' + 2y' - y = 0$$
; $y(0) = 0$, $y'(0) = -1$.

Existence and Uniqueness: Homogeneous Case

Theorem 1. For any real numbers $a \neq 0$, b, c, t_0 , Y_0 , and Y_1 , there exists a unique solution to the initial value problem

(10)
$$ay'' + by' + cy = 0$$
; $y(t_0) = Y_0$, $y'(t_0) = Y_1$.

The solution is valid for all t in $(-\infty, +\infty)$.

Linear Independence of Two Functions

Definition 1. A pair of functions $y_1(t)$ and $y_2(t)$ is said to be **linearly independent on** the interval I if and only if neither of them is a constant multiple of the other on all of I. We say that y_1 and y_2 are **linearly dependent on** I if one of them is a constant multiple of the other on all of I.

Representation of Solutions to Initial Value Problem

Theorem 2. If $y_1(t)$ and $y_2(t)$ are any two solutions to the differential equation (2) that are linearly independent on $(-\infty, \infty)$, then unique constants c_1 and c_2 can always be found so that $c_1y_1(t) + c_2y_2(t)$ satisfies the initial value problem (10) on $(-\infty, \infty)$.

The proof of Theorem 2 will be easy once we establish the following technical lemma.

A Condition for Linear Dependence of Solutions

Lemma 1. For any real numbers $a \neq 0$, b, and c, if $y_1(t)$ and $y_2(t)$ are any two solutions to the differential equation (2) on $(-\infty, \infty)$ and if the equality

(11)
$$y_1(\tau)y_2'(\tau) - y_1'(\tau)y_2(\tau) = 0$$

holds at any point τ , then y_1 and y_2 are linearly dependent on $(-\infty, \infty)$. (The expression on the left-hand side of (11) is called the *Wronskian* of y_1 and y_2 at the point τ ; see Problem 34 on page 164.)

Distinct Real Roots

If the auxiliary equation (3) has distinct real roots r_1 and r_2 , then both $y_1(t) = e^{r_1 t}$ and $y_2(t) = e^{r_2 t}$ are solutions to (2) and $y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$ is a general solution.

[†]To solve for c_1 , for example, multiply the first equation by $y_2'(t_0)$ and the second by $y_2(t_0)$ and subtract.

Repeated Root

If the auxiliary equation (3) has a repeated root r, then both $y_1(t) = e^{rt}$ and $y_2(t) = te^{rt}$ are solutions to (2), and $y(t) = c_1 e^{rt} + c_2 t e^{rt}$ is a general solution.

We illustrate this result before giving its proof.

Example 3 Find a solution to the initial value problem

(12)
$$y'' + 4y' + 4y = 0$$
; $y(0) = 1$, $y'(0) = 3$.

Example 4 Find a general solution to

(14)
$$y''' + 3y'' - y' - 3y = 0$$
.

Example 1 Use the general solution (8) to solve the initial value problem

$$y'' + 2y' + 2y = 0$$
; $y(0) = 0$, $y'(0) = 2$.

Maclaurin Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots \quad for |x| < 1$$

$$\tan^{-1}(x) = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{7}}{7} + \dots \quad for |x| < 1$$