THEOREM 8.1 Integration by Parts

If u and v are functions of x and have continuous derivatives, then

$$\int u\,dv = uv - \int v\,du.$$

GUIDELINES FOR INTEGRATION BY PARTS

- 1. Try letting dv be the most complicated portion of the integrand that fits a basic integration rule. Then u will be the remaining factor(s) of the integrand.
- 2. Try letting u be the portion of the integrand whose derivative is a function simpler than u. Then dv will be the remaining factor(s) of the integrand.

Note that dv always includes the dx of the original integrand.

EXAMPLE 1

Integration by Parts

Find
$$\int xe^x dx$$
.

Integration by Parts

Find
$$\int x^2 \ln x \, dx$$
.

Integration by Parts

Find $\int x^2 \ln x \, dx$.

The area of the region is approximately 0.571.

Figure 8.2 or freed not estimated notice

EXAMPLE 4

Repeated Use of Integration by Parts

Find
$$\int x^2 \sin x \, dx$$
.

EXAMPLE 5

Integration by Parts

Find $\int \sec^3 x \, dx$.

EXAMPLE 6

Finding a Centroid

A machine part is modeled by the region bounded by the graph of $y = \sin x$ and the x-axis, $0 \le x \le \pi/2$, as shown in Figure 8.3. Find the centroid of this region.

Figure 8.3

SUMMARY: COMMON INTEGRALS USING INTEGRATION BY PARTS

1. For integrals of the form

$$\int x^n e^{ax} dx, \quad \int x^n \sin ax dx, \quad \text{or} \quad \int x^n \cos ax dx$$

let $u = x^n$ and let $dv = e^{ax} dx$, $\sin ax dx$, or $\cos ax dx$.

2. For integrals of the form

$$\int x^n \ln x \, dx, \quad \int x^n \arcsin ax \, dx, \quad \text{or} \quad \int x^n \arctan ax \, dx$$

let $u = \ln x$, arcsin ax, or arctan ax and let $dv = x^n dx$.

3. For integrals of the form

$$\int e^{ax} \sin bx \, dx \quad \text{or} \quad \int e^{ax} \cos bx \, dx$$

let $u = \sin bx$ or $\cos bx$ and let $dv = e^{ax} dx$.

EXAMPLE 7

Using the Tabular Method

•••• See LarsonCalculus.com for an interactive version of this type of example.

Find
$$\int x^2 \sin 4x \, dx$$
.