

Figure 7.27

Figure 7.28

THE SHELL METHOD

To find the volume of a solid of revolution with the shell method, use one of the formulas below. (See Figure 7.29.)

Horizontal Axis of Revolution

Vertical Axis of Revolution

Volume =
$$V = 2\pi \int_{a}^{d} p(y)h(y) dy$$
 Volume = $V = 2\pi \int_{a}^{b} p(x)h(x) dx$

Volume =
$$V = 2\pi \int_a^b p(x)h(x) dx$$

EXAMPLE 11 Using the Shell Method to Find Volume

Find the volume of the solid of revolution formed by revolving the region bounded by

$$y=x-x^3$$

and the x-axis $(0 \le x \le 1)$ about the y-axis.

Figure 7.30

EXAMPLE 2 Using the Shell Method to Find Volume

Find the volume of the solid of revolution formed by revolving the region bounded by the graph of

$$x=e^{-y^2}$$

and the y-axis $(0 \le y \le 1)$ about the x-axis.

Figure 7.31

Disk method: Representative rectangle is perpendicular to the axis of revolution.

Figure 7.32

Vertical axis of revolution

Horizontal axis of revolution

Shell method: Representative rectangle is parallel to the axis of revolution.

EXAMPLE 3

Shell Method Preferable

•••• See LarsonCalculus.com for an interactive version of this type of example.

Find the volume of the solid formed by revolving the region bounded by the graphs of

$$y = x^2 + 1$$
, $y = 0$, $x = 0$, and $x = 1$

about the y-axis.

(a) Disk method

(b) Shell method

Figure 7.33

EXAMPLE 4

Volume of a Pontoon

1

A pontoon is to be made in the shape shown in Figure 7.34. The pontoon is designed by rotating the graph of

$$y = 1 - \frac{x^2}{16}, \quad -4 \le x \le 4$$

about the x-axis, where x and y are measured in feet. Find the volume of the pontoon.

Figure 7.34

Disk method Figure 7.35

EXAMPLE 5Shell Method Necessary

Find the volume of the solid formed by revolving the region bounded by the graphs of $y = x^3 + x + 1$, y = 1, and x = 1 about the line x = 2, as shown in Figure 7.36.

Figure 7.36