

Near (c, f(c)), the graph of P can be used to approximate the graph of f. Figure 9.10

EXAMPLE 1

First-Degree Polynomial Approximation of $f(x) = e^x$

For the function $f(x) = e^x$, find a first-degree polynomial function $P_1(x) = a_0 + a_1 x$ whose value and slope agree with the value and slope of f at x = 0.

 P_1 is the first-degree polynomial approximation of $f(x) = e^x$.

Figure 9.11

 P_2 is the second-degree polynomial approximation of $f(x) = e^x$. Figure 9.12

EXAMPLE 2 Third-Degree Polynomial Approximation of $f(x) = e^x$

Construct a table comparing the values of the polynomial

$$P_3(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{3!}x^3$$

3rd-degree approximation

with $f(x) = e^x$ for several values of x near 0.

Definitions of *n*th Taylor Polynomial and *n*th Maclaurin Polynomial

If f has n derivatives at c, then the polynomial

$$P_n(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n$$

is called the *n*th Taylor polynomial for f at c. If c = 0, then

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \cdots + \frac{f^{(n)}(0)}{n!}x^n$$

is also called the nth Maclaurin polynomial for f.

EXAMPLE 3. A Maclaurin Polynomial for $f(x) = e^x$

Find the *n*th Maclaurin polynomial for

$$f(x)=e^x.$$

EXAMPLE 4

Finding Taylor Polynomials for In x

Find the Taylor polynomials P_0 , P_1 , P_2 , P_3 , and P_4 for

$$f(x) = \ln x$$

centered at c = 1.

As n increases, the graph of P_n becomes a better and better approximation of the graph of $f(x) = \ln x$ near x = 1.

Figure 9.14

EXAMPLE 5 Finding Maclaurin Polynomials for cos x

Find the Maclaurin polynomials P_0 , P_2 , P_4 , and P_6 for $f(x) = \cos x$. Use $P_6(x)$ to approximate the value of $\cos(0.1)$.

Near (0, 1), the graph of P_6 can be used to approximate the graph of $f(x) = \cos x$.

Figure 9.15

EXAMPLE 6 Finding a Taylor Polynomial for sin x

•••• See LarsonCalculus.com for an interactive version of this type of example.

Find the third Taylor polynomial for $f(x) = \sin x$, expanded about $c = \pi/6$.

Near $(\pi/6, 1/2)$, the graph of P_3 can be used to approximate the graph of $f(x) = \sin x$.

Figure 9.16

EXAMPLE 7

Approximation Using Maclaurin Polynomials

Use a fourth Maclaurin polynomial to approximate the value of ln(1.1).

). The absolute value of $R_n(x)$ is called the **error** That is,

Error =
$$|R_n(x)| = |f(x) - P_n(x)|$$
.

THEOREM 9.19 Taylor's Theorem

If a function f is differentiable through order n+1 in an interval I containing c, then, for each x in I, there exists z between x and c such that

$$f(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^{2} + \cdots + \frac{f^{(n)}(c)}{n!}(x - c)^{n} + R_{n}(x)$$

where

$$R_n(x) = \frac{f^{(n+1)}(z)}{(n+1)!}(x-c)^{n+1}.$$

A proof of this theorem is given in Appendix A.

See LarsonCalculus.com for Bruce Edwards's video of this proof.

EXAMPLE 8 Determining the Accuracy of an Approximation

The third Maclaurin polynomial for $\sin x$ is

$$P_3(x)=x-\frac{x^3}{3!}.$$

Use Taylor's Theorem to approximate $\sin(0.1)$ by $P_3(0.1)$ and determine the accuracy of the approximation.

EXAMPLE 9 Approximating a Value to a Desired Accuracy

Determine the degree of the Taylor polynomial $P_n(x)$ expanded about c = 1 that should be used to approximate $\ln(1.2)$ so that the error is less than 0.001.