Newton's Method for Approximating the Zeros of a Function

Let f(c) = 0, where f is differentiable on an open interval containing c. Then, to approximate c, use these steps.

- 1. Make an initial estimate x_1 that is close to c. (A graph is helpful.)
- 2. Determine a new approximation

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

3. When $|x_n - x_{n+1}|$ is within the desired accuracy, let x_{n+1} serve as the final approximation. Otherwise, return to Step 2 and calculate a new approximation.

Each successive application of this procedure is called an iteration.

EXAMPLE 1 Using Newton's Method

Calculate three iterations of Newton's Method to approximate a zero of $f(x) = x^2 - 2$. Use $x_1 = 1$ as the initial guess.

Using Newton's Method

•••• See LarsonCalculus.com for an interactive version of this type of example.

Use Newton's Method to approximate the zeros of

$$f(x) = 2x^3 + x^2 - x + 1.$$

Continue the iterations until two successive approximations differ by less than 0.0001

Using Newton's Method In Exercises 1-4, complete two iterations of Newton's Method to approximate a zero of the function using the given initial guess.

1.
$$f(x) = x^2 - 5$$
, $x_1 = 2.2$

2.
$$f(x) = x^3 - 3$$
, $x_1 = 1.4$

5.
$$f(x) = x^3 + 4$$
 6. $f(x) = 2 - x^3$

7.
$$f(x) = x^3 + x - 1$$
 8. $f(x) = x^5 + x - 1$

6.
$$f(x) = 2 - x^3$$

8.
$$f(x) = x^5 + x - 1$$

20

EXAMPLE 3

An Example in Which Newton's Method Fails

The function $f(x) = x^{1/3}$ is not differentiable at x = 0. Show that Newton's Method fails to converge using $x_1 = 0.1$.

Minimum Time You are in a boat 2 miles from the nearest point on the coast (see figure). You are to go to a point Q that is 3 miles down the coast and 1 mile inland. You can row at 3 miles per hour and walk at 4 miles per hour. Toward what point on the coast should you row in order to reach Q in the least time?

Crime The total number of arrests T (in thousands) for all males ages 15 to 24 in 2010 is approximated by the model

$$T = 0.2988x^4 - 22.625x^3 + 628.49x^2 - 7565.9x + 33,478$$

for $15 \le x \le 24$, where x is the age in years (see figure). Approximate the two ages that had total arrests of 300 thousand. (Source: U.S. Department of Justice)

