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Figure 1.6 (a) Direction field for dy/dx = x*—y (b) Solutions to dy/dx = x2—y
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Figure 1.7 (a) Direction field for dy/dx = —2y (b) Direction field for dy/dx = —y/x
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Theorem 1. Consider the initial value problem

d
Ey =fxy), y(x) = .

If fand df/dy are continuous functions in some rectangle
R={(xy)ra<x<bc<y<d}

that contains the point (xg, yp). then the initial value problem has a unique solution
¢(x) in some interval xy — 6 < x < x, + 8, where 8 is a positive number."




Example 1 The logistic equation for the population p (in thousands) at time ¢ of a certain species is
given by
dp

) E=P(2—P)-

(Of course, p is nonnegative. The interpretation of the terms in the logistic equation is dis-
cussed in Section 3.2.) From the direction field sketched in Figure 1.10 on page 19, answer the
following:

(a) If the initial population is 3000 [ that is, p(0) = 3], what can you say about the lim-
iting population lim,—, ;.. p(¢)?

(b) Can a population of 1000 ever decline to 500?

(¢) Can a population of 1000 ever increase to 3000?
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Figure 1.10 Direction field for logistic equation



Separable Equation

Definition 1. If the right-hand side of the equation
dy
dx - f (-x7 b )

can be expressed as a function g(x) that depends only on x times a function p(y) that
depends only on y, then the differential equation is called separable.

2 First-Order Differential Equations

To solve the equation

i.
(2) i,% = g(x)p(»)

multiply by dx and by /i(y) = 1/p(y) to obtain
h(y)dv = g(x)dx.

Then integrate both sides:

/h(y)dy = /g(x)dx,

@)  H(y) =G(x)+cC,

where we have merged the two constants of inte

L et gration into a single « . Lo
€quation gives an implicit solution to the differe gle symbol C. The last

ntial equation.




Linear Equations

A type of first-order differential equation that occurs frequent
equation. Recall from Section 1.1 that a linear first-order equ:
expressed in the form

d
M ay(x) o +a(x)y =b(x)

d
@ @)= b)),

which is equivalent to

b(x
y(x)=/ ()dx+C

a;(x)

@  laG] = bx)

and the solution is again elementary:

a;(x)y = /b(x)dx+C,

. [fb(x)dx%—C}.

a;(x)



"Mathod for Solving Linear Equations

(a) Write the equation in the standard form

L1 P(x)y = 0(x).

(b) Calculate the integrating factor w(x) by the formula

w(x) = exp{ /P(x)dx].

(c) Multiply the equation in standard form by w(x) and, recalling that the left-hand side
.
o )
is jus dx[u(x)y], obtain

d
B() 2+ PRy = p(x)Q(x) |

7

N

%[A(X)y] = u(x)Q(x) .

(d) Integrate the last equation and solve for y by dividing by u(x) to obtain (8).

Example 1 Find the general solution to

ldy 2
9) ;ﬁ—x—z=xcosx, &0



Example 2

—100 7

—200 7

Figure 2.5 Graph of y = x?sin x + Cx? for five values of the constant C

to the same radioactiy
A rock contains two radioactive isotopes, RA| and RA?, that E;alorzgms p P l:
ies: that is, RA; decays into RA,, which then decays into stable a : :
i b, e . is 50¢~1% the rate of decay of RA; is propor
at which RA; decays into RA, is 50e™" kg/sec. Because. .
tional to the mass y(t) of RA, present, the rate of change in RA, 1s

d .
Fy = rate of creation — rate of decay ,
t

dy —10¢
e — 0 S )
a2 7 =50k

where k>0 is the decay constant. If k = 2/sec and initially y(0) = 40 kg, find the mas
y(t) of RA, for t = 0.



