$$(1) \qquad \frac{dy}{dx} = x^2 - y \ .$$

Figure 1.6 (a) Direction field for $dy/dx = x^2 - y$ (b) Solutions to $dy/dx = x^2 - y$

Figure 1.7 (a) Direction field for dy/dx = -2y (b) Direction field for dy/dx = -y/x

Figure 1.8 (a) A solution for dy/dx = -2y (b) A solution for dy/dx = -y/x

Existence and Uniqueness of Solution

Theorem 1. Consider the initial value problem

$$\frac{dy}{dx} = f(x, y) , \qquad y(x_0) = y_0 .$$

If f and $\partial f/\partial y$ are continuous functions in some rectangle

$$R = \{(x, y): a < x < b, c < y < d\}$$

that contains the point (x_0, y_0) , then the initial value problem has a unique solution $\phi(x)$ in some interval $x_0 - \delta < x < x_0 + \delta$, where δ is a positive number.[†]

The logistic equation for the population p (in thousands) at time t of a certain species is Example 1 given by

$$(2) \qquad \frac{dp}{dt} = p(2-p) \ .$$

(Of course, p is nonnegative. The interpretation of the terms in the logistic equation is discussed in Section 3.2.) From the direction field sketched in Figure 1.10 on page 19, answer the following:

- (a) If the initial population is 3000 [that is, p(0) = 3], what can you say about the limiting population $\lim_{t\to +\infty} p(t)$?
- (b) Can a population of 1000 ever decline to 500?
- (c) Can a population of 1000 ever increase to 3000?

DIFFCI

Figure 1.10 Direction field for logistic equation

Separable Equation

Definition 1. If the right-hand side of the equation

$$\frac{dy}{dx} = f(x, y)$$

can be expressed as a function g(x) that depends only on x times a function p(y) that depends only on y, then the differential equation is called **separable.**[†]

2 First-Order Differential Equations

Method for Solving Separable Equations

To solve the equation

(2)
$$\frac{dy}{dx} = g(x)p(y)$$

multiply by dx and by h(y) := 1/p(y) to obtain

$$h(y) dy = g(x) dx$$
.

Then integrate both sides:

$$\int h(y) dy = \int g(x) dx,$$

$$(3) H(y) = G(x) + C,$$

where we have merged the two constants of integration into a single symbol C. The last equation gives an implicit solution to the differential equation.

Linear Equations

A type of first-order differential equation that occurs frequent equation. Recall from Section 1.1 that a linear first-order equation expressed in the form

(1)
$$a_1(x)\frac{dy}{dx} + a_0(x)y = b(x)$$
,

$$(2) a_1(x)\frac{dy}{dx} = b(x) ,$$

which is equivalent to

$$y(x) = \int \frac{b(x)}{a_1(x)} dx + C$$

(3)
$$\frac{d}{dx}[a_1(x)y] = b(x)$$

and the solution is again elementary:

$$a_1(x)y = \int b(x) dx + C,$$

$$y(x) = \frac{1}{a_1(x)} \left[\int b(x) dx + C \right].$$

Method for Solving Linear Equations

(a) Write the equation in the standard form

$$\frac{dy}{dx} + P(x)y = Q(x) .$$

(b) Calculate the integrating factor $\mu(x)$ by the formula

$$\mu(x) = \exp\left[\int P(x)dx\right].$$

(c) Multiply the equation in standard form by $\mu(x)$ and, recalling that the left-hand side is just $\frac{d}{dx}[\mu(x)y]$, obtain

$$\underbrace{\frac{dy}{dx} + P(x)\mu(x)y}_{\frac{d}{dx}} = \mu(x)Q(x),$$

$$\underbrace{\frac{d}{dx}[\mu(x)y]}_{\frac{d}{dx}} = \mu(x)Q(x).$$

(d) Integrate the last equation and solve for y by dividing by $\mu(x)$ to obtain (8).

Example 1 Find the general solution to

(9)
$$\frac{1}{x} \frac{dy}{dx} - \frac{2y}{x^2} = x \cos x, \quad x > 0.$$

Figure 2.5 Graph of $y = x^2 \sin x + Cx^2$ for five values of the constant C

Example 2 A rock contains two radioactive isotopes, RA_1 and RA_2 , that belong to the same radioactive series; that is, RA_1 decays into RA_2 , which then decays into stable atoms. Assume that the rate at which RA_1 decays into RA_2 is $50e^{-10t}$ kg/sec. Because the rate of decay of RA_2 is proportional to the mass y(t) of RA_2 present, the rate of change in RA_2 is

$$\frac{dy}{dt} = \text{rate of creation} - \text{rate of decay},$$

(12)
$$\frac{dy}{dt} = 50e^{-10t} - ky,$$

where k > 0 is the decay constant. If $k = 2/\sec$ and initially y(0) = 40 kg, find the mass y(t) of RA_2 for $t \ge 0$.