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NEXAMEIEN \ Vector Representation: Directed Line Segments

Let v be represented by the directed line segment from (0,0) to (3,2), and let u be
represented by the directed line segment from (1,2) to (4, 4). Show that v and u ar
eauivalent.

The vectors u and v aré equivalen® i

Figure 11.3
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A' vector in standard position
Figure 11.4

Definition of Component Form of a Vector in the Plane

If v is a vector in the plane whose initial point is the origin and whose terminal
point is (v,, v,), then the component form of v is

v = (v, Vo).

The coordinates v, and v, are called the components of v. If both the initial
point and the terminal point lie at the origin, then v is called the zero vector

and is denoted by 0 = (0, 0).

Length of a vector
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Component Form and Length of a Vector

Find the component form and length of the vector v that has initial point (3, —7) and
terminal point (—2, 5)-

v

Q(=-2,5) 6+
L]

P(3,-7)

C?mponent formof v: v = (—5,12)
Figure 11,5

Vector Operations

r Definitions of Vector Addition and Scalar Multiplication
Letu = (u,, u,) and v = (v,, v,) be vectors and let ¢ be a scalar.

1. The vector sum of u and v is the vector u + v = (u; + vy, uy + ).
2. The scalar multiple of ¢ and u is the vector

cu = (cu,, cu,).
3. The negative of v is the vector
—v=(=1v={(=v, =)
4. The difference of u and v is

u—v=u+(=v)=(u = v,u — v
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The scalar multiplication of v
Figure 11.6

/ /

To findu + v, (1) move the initial point of v (2) move the initial point of U
to the terminal point of u, or to the terminal point of V-

Figure 11.7
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Vector Operations

For v = (—2,5) and w = (3, 4), find each of the vectors.

a. %v b. w—v ¢ v+2w
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THEOREM 11.1 Properties of Vector Operations
Let u, v, and w be vectors in the plane, and let ¢ and d be scalars.

l.u+v=v+au Commutative Property
2. w+v)+w=u+ (v+w Associative Property
3.u+0=nu Additive Identity Property
4. u+ (—u) =10 Additive Inverse Property
5. c(du) = (cd)u

6. (c + du = cu+ du Distributive Property

7. c(u + V) =cu + cv Distributive Property

8. 1(u) = u,0(m) =0

THEOREM 11.2 Length of a Scalar Multiple
Let v be a vector and let ¢ be a scalar. Then

lev]| = ] [|v]|. |c| is the absolute value of c.

THEOREM 11.3 Unit Vector in the Direction of v

If v is a nonzero vector in the plane, then the vector

LoV _ 1
M~ M

has length 1 and the same direction as v.
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‘ Finding a Unit Vector

Find a unit vector in the direction of v = (—2, 5) and verify that it has length L.

I3i=0.1)

\gi =.(1’0) L —— X

]
= I
1

. . . al‘d Un' ] .
Triangle inequality lgure 1 1:; vectors i and J

Figure 11.9
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Writing a Linear Combination of Unit Vectors

Let u be the vector with initial point (2, —5) and terminal point (—1, 3), and let
v = 2i — j. Write each vector as a linear combination of i and j.

a. u b. w = 2u — 3v

rml Writing a Vector of Given Magnitude and Direction

The vector v has a magnitude of 3 and makes an angle of 30° = 77/6 with the positive
x-axis. Write v as a linear combination of the unit vectors i and j.
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Finding the Resultant Force

Two tugboats are pushing an ocean liner, as shown in Figure 11.12. Each boat is
exerting a force of 400 pounds. What is the resultant force on the ocean liner?

.\.
\ .
400 cos(=20°) et
s 1-20°5 |

3 i 't 400 sin(=20°)

‘-—;'_Ji)/_; X .
£ 400, 2 The resultant foree on the ocean lipe
L 1300 400 sin(20°) that is exerted by er
L~ }20° exerted by the

. WO tugboatg
Figure 11.12

400 €0s8(20°)
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Finding a Velocity

cene P> See LarsonCalculus.com for an interactive version of this type of example.

An airplane is traveling at a fixed altitude with a negligible wind factor. The airplane
is traveling at a speed of 500 miles per hour with a bearing of 330°, as shown in
Figure 11.13(a). As the airplane reaches a certain point, it encounters wind with 2
velocity of 70 miles per hour in the direction N 45° E (45° east of north), as shown 1
Figure 11.13(b). What are the resultant speed and direction of the airplane?

(a) Direction without wind

y
f«w“fﬁk‘m 74 m.«n«?
;v’ ay A-;‘g...“." -/_‘?"- ARNENY ’

v, N
S
v
/
Wind ¥

(b) Direction with wind
Figure 11.13
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75. Resultant Force Forces with magnitudes of 500 pounds
and 200 pounds act on a machine part at angles of 30° and
—45°, respectively, with the x-axis (see figure). Find the
direction and magnitude of the resultant force.

Figure for 75
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80. Cable Tension Determine the tension in each
supporting the given load for each figure.

(a) (b)

cable

10in.  20in.

A
‘

£30001b \




