Definition of Dot Product

The **dot product** of $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ is

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2.$$

The **dot product** of $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ is

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3.$$

THEOREM 11.4 Properties of the Dot Product

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in the plane or in space and let c be a scalar.

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

Commutative Property

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

2. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
3. $c(\mathbf{u} \cdot \mathbf{v}) = c\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot c\mathbf{v}$
4. $0 \cdot \mathbf{v} = 0$
5. $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$

Distributive Property

3.
$$c(\mathbf{u} \cdot \mathbf{v}) = c\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot c\mathbf{v}$$

$$4. \ 0 \cdot \mathbf{v} = 0$$

5.
$$\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$$

The angle between two vectors

Figure 11.24

THEOREM 11.5 Angle Between Two Vectors

If θ is the angle between two nonzero vectors **u** and **v**, where $0 \le \theta \le \pi$, then

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}.$$

Finding Dot Products

Let $\mathbf{u} = \langle 2, -2 \rangle$, $\mathbf{v} = \langle 5, 8 \rangle$, and $\mathbf{w} = \langle -4, 3 \rangle$.

Definition of Orthogonal Vectors

The vectors \mathbf{u} and \mathbf{v} are orthogonal when $\mathbf{u} \cdot \mathbf{v} = 0$.

Finding the Angle Between Two Vectors

•••• See LarsonCalculus.com for an interactive version of this type of example.

For $\mathbf{u} = \langle 3, -1, 2 \rangle$, $\mathbf{v} = \langle -4, 0, 2 \rangle$, $\mathbf{w} = \langle 1, -1, -2 \rangle$, and $\mathbf{z} = \langle 2, 0, -1 \rangle$, find the angle between each pair of vectors.

a. u and v b. u and w c. v and z

 $\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$

Alternative form of dot product

Alternative Form of the Dot Product

Given that $\|\mathbf{u}\| = 10$, $\|\mathbf{v}\| = 7$, and the angle between \mathbf{u} and \mathbf{v} is $\pi/4$, find $\mathbf{u} \cdot \mathbf{v}$.

Finding Direction Angles

Find the direction cosines and angles for the vector $\mathbf{v} = 2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$, and show that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.

The force due to gravity pulls the boat against the ramp and down the ramp.

Figure 11.28

 $\mathbf{w}_1 = \text{proj}_{\mathbf{v}} \mathbf{u} = \text{projection of } \mathbf{u} \text{ onto } \mathbf{v} = \text{vector component of } \mathbf{u} \text{ along } \mathbf{v}$ $\mathbf{w}_2 = \text{vector component of } \mathbf{u} \text{ orthogonal to } \mathbf{v}$

Figure 11.29

Definitions of Projection and Vector Components

Let **u** and **v** be nonzero vectors. Moreover, let

$$\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$$

where \mathbf{w}_1 is parallel to \mathbf{v} and \mathbf{w}_2 is orthogonal to \mathbf{v} , as shown in Figure 11.29.

- 1. \mathbf{w}_1 is called the **projection of u onto v** or the **vector component of u along v**, and is denoted by $\mathbf{w}_1 = \text{proj}_{\mathbf{v}}\mathbf{u}$.
- 2. $\mathbf{w}_2 = \mathbf{u} \mathbf{w}_1$ is called the vector component of \mathbf{u} orthogonal to \mathbf{v} .

EXAMPLE 5

Finding a Vector Component of u Orthogonal to v

Find the vector component of $\mathbf{u} = \langle 5, 10 \rangle$ that is orthogonal to $\mathbf{v} = \langle 4, 3 \rangle$, given that

$$\mathbf{w}_1 = \text{proj}_{\mathbf{v}} \mathbf{u} = \langle 8, 6 \rangle$$

and

$$\mathbf{u} = \langle 5, 10 \rangle = \mathbf{w}_1 + \mathbf{w}_2.$$

THEOREM 11.6 Projection Using the Dot Product

If \mathbf{u} and \mathbf{v} are nonzero vectors, then the projection of \mathbf{u} onto \mathbf{v} is

$$\operatorname{proj}_{\mathbf{v}}\mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2}\right)\mathbf{v}.$$

EXAMPLE 6 Decomposing a Vector into Vector Components

Find the projection of \mathbf{u} onto \mathbf{v} and the vector component of \mathbf{u} orthogonal to \mathbf{v} for

$$\mathbf{u} = 3\mathbf{i} - 5\mathbf{j} + 2\mathbf{k}$$
 and $\mathbf{v} = 7\mathbf{i} + \mathbf{j} - 2\mathbf{k}$.

(a) Force acts along the line of motion.

Figure 11.33

(b) Force acts at angle θ with the line of motion.

Definition of Work

The work W done by a constant force \mathbf{F} as its point of application moves along the vector \overrightarrow{PQ} is one of the following.

1. $W = \|\operatorname{proj}_{\overrightarrow{PQ}} \mathbf{F} \| \| \overrightarrow{PQ} \|$

Projection form

2. $W = \mathbf{F} \cdot \overrightarrow{PQ}$

Dot product form

EXAMPLE 8

Finding Work

To close a sliding door, a person pulls on a rope with a constant force of 50 pounds at a constant angle of 60°, as shown in Figure 11.34. Find the work done in moving the door 12 feet to its closed position.

Figure 11.34