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_ Minimum Cost A water line is to be built from point P to
point S and must pass through regions where construction
costs differ (see figure). The cost per kilometer (in dollars) is
3k from P to Q, 2k from Q to R, and k from R to S. Find x and

y such that the total cost C will be minimized.
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- > THEOREM 13.19 Lagrange’s Theorem

Let f and g have continuous first partial derivatives such that f has an
extremum at a point (x,, y,) on the smooth constraint curve g(x, y) = c¢. If
Vg(x,, vo) # 0. then there is a real number A such that

Vf (xos Yo) = AVg(xo, )’o)-

Method of Lagrange Multipliers

LP:t fand g satisfy the hypothesis of Lagrange’s Theorem, and let fhave a
minimum or maximum subject to the constraint g(x, y) = ¢. To find the
minimum or maximum of f, use these steps.

1. Simultaneously solve the equations Vf(x, y) = AVg(x, y) and g(x, y) = ¢
by solving the following system of equations.
filx,y) = Ag,(x.y)
£, y) = Agy(x. y)
glx,y) =c¢
2. Evaluate fat each solution point obtained in the first step. The greatest value

yields the maximum of f subject to the constraint g(x, ) = c, and the least
value yields the minimum of f subject to the constraint g(x, y) = c.
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EXAMPLE 1 Using a Lagrange Multiplier with One Constraint

Find the maximum value of f(x, y) = 4xy, where x > 0 and y > 0, subject to the
constraint (x2/32) + (y%/4?) = 1.
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14.1

Integrating with Respect to y

Evaluate f (2x2y~2 + 2y) dy.
I

The Integral of an Integral

2 x
Evaluate f [ f (2x2y=2 + 2y) dy] dx.
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Area of a Region in the Plane

1. If Ris defined by @ < x < band g,(x) < y < g,(x), where g, and g, are
continuous on [a, b, then the area of R is

b [g,(x)
A= f dy dx. Figure 14.2 (vertically simple)
a Jg,(x)
2. If Ris definedby ¢ < y < dand h,(y) < x < h,(y), where h, and h, are
continuous on [c, d], then the area of R is

d (h,(y)
A= f dx dy. Figure 14.3 (horizontally simple)
c J(y)
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The Area of a Rectangular Region

Use an iterated integral to represent the area of the rectangle shown in Figure 14.4.
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Finding Area by an Iterated Integral

Use an iterated integral to find the area of the region bounded by the graphs of
f(x) = sinx Sine curve forms upper boundary.
and

g( X) = COS X Cosine curve forms lower boundary.

between x = 7/4 and x = Sm/4.
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EXAMPLE 5 Comparing Different Orders of Integration

« « « «> See LarsonCalculus.com for an interactive version of this type of example.

Sketch the region whose area is represented by the integral

2 4
f f dx dy.
0 Jy2

Then find another iterated integral using the order dy dx to represent the same area and
show that both integrals yield the same value.
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An Area Represented by Two Iterated Integrals

Find the area of the region R that lies below the parabola
VA 4x — x? Parabola forms upper boundary.
above the x-axis, and above the line

) L 8y 0. Line and x-axis form lower boundary.
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