Force = (mass)(acceleration).

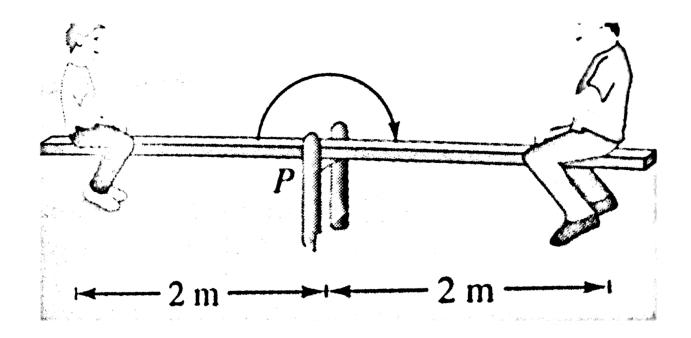
below lists some commonly used measures of mass and force, togeth version factors.

System of Measurement	Measure of Mass	Measure of Force
U.S.	Slug	Pound = $(slug)(ft/sec^2)$
International	Kilogram	Newton = (kilogram)(m/sec ²)
C-G-S	Gram	$Dyne = (gram)(cm/sec^2)$
Conversions:		
1 pound = 4.44	48 newtons	1 slug = 14.59 kilograms
1 newton = 0.2248 pound $1 kilogram = 0.06852$		
1 dyne = 0.000	0002248 nou	nd 1 gram = 0.00006852 slug
1 dyne = 0.000	001 newton	1 foot = 0.3048 meter

EXAMPLE

Mass on the Surface of Earth

Find the mass (in slugs) of an object whose weight at sea level is 1 pound.



Moments and Center of Mass: One-Dimensional System

Let the point masses m_1, m_2, \ldots, m_n be located at x_1, x_2, \ldots, x_n .

1. The moment about the origin is

$$M_0 = m_1 x_1 + m_2 x_2 + \cdot \cdot \cdot + m_n x_n.$$

2. The center of mass is

$$\bar{x} = \frac{M_0}{m}$$

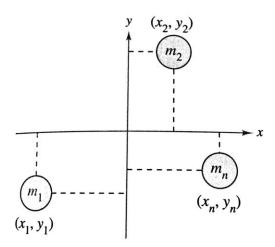
where $m = m_1 + m_2 + \cdots + m_n$ is the **total mass** of the system.

EXAMPLE 2

The Center of Mass of a Linear System

Find the center of mass of the linear system shown in Figure 7.55.

Figure 7.55



In a two-dimensional system, there is a moment about the y-axis M_y and a moment about the x-axis M_x .

Figure 7.56

Moment and Center of Mass: Two-Dimensional System

Let the point masses m_1, m_2, \ldots, m_n be located at $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.

1. The moment about the y-axis is

$$M_y = m_1 x_1 + m_2 x_2 + \dots + m_n x_n.$$

2. The moment about the x-axis is

$$M_x = m_1 y_1 + m_2 y_2 + \dots + m_n y_n.$$

3. The center of mass (\bar{x}, \bar{y}) (or center of gravity) is

$$\bar{x} = \frac{M_y}{m}$$
 and $\bar{y} = \frac{M_x}{m}$

where

$$m = m_1 + m_2 + \ldots + m_n$$

is the total mass of the system.

The Center of Mass of a Two-Dimensional System

Find the center of mass of a system of point masses $m_1 = 6$, $m_2 = 3$, $m_3 = 2$, and $m_4 = 9$, located at

$$(3, -2), (0, 0), (-5, 3), and (4, 2)$$

as shown in Figure 7.57.

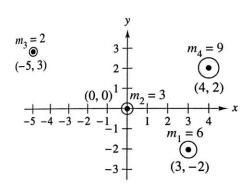
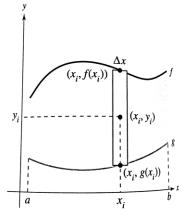


Figure 7.57



Planar lamina of uniform density θ Figure 7.59

Moments and Center of Mass of a Planar Lamina

Let f and g be continuous functions such that $f(x) \ge g(x)$ on [a, b], and consider the planar lamina of uniform density ρ bounded by the graphs of y = f(x), y = g(x), and $a \le x \le b$.

1. The moments about the x- and y-axes are

$$M_x = \rho \int_a^b \left[\frac{f(x) + g(x)}{2} \right] [f(x) - g(x)] dx$$

$$M_y = \rho \int_a^b x [f(x) - g(x)] dx.$$

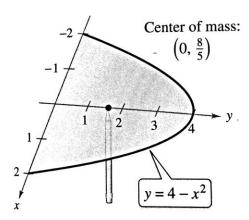
2. The center of mass (\bar{x}, \bar{y}) is given by $\bar{x} = \frac{M_y}{m}$ and $\bar{y} = \frac{M_x}{m}$, where $m = \rho \int_a^b [f(x) - g(x)] dx$ is the mass of the lamina.

EXAMPLE 4

The Center of Mass of a Planar Lamina

•••• See LarsonCalculus.com for an interactive version of this type of example.

Find the center of mass of the lamina of uniform density ρ bounded by the graph of $f(x) = 4 - x^2$ and the x-axis.



The center of mass is the balancing point.

Figure 7.60

EXAMPLE 5

The Centroid of a Plane Region

Find the centroid of the region bounded by the graphs of $f(x) = 4 - x^2$ and g(x) = x + 2.

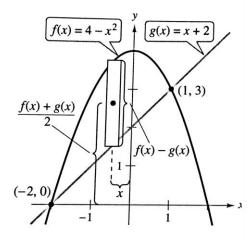
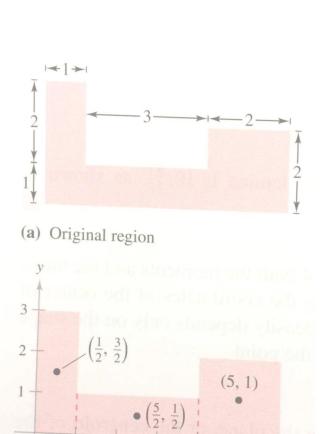


Figure 7.61

EXAMPLE 6 The Centroid of a Simple Plane Region

Find the centroid of the region shown in Figure 7.62(a).



(b) The centroids of the three rectangles

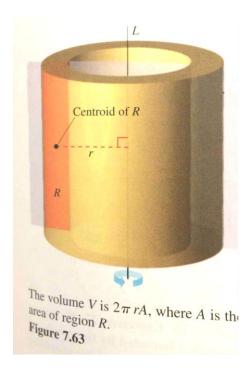
Figure 7.62

THEOREM 7.1 The Theorem of Pappus

Let R be a region in a plane and let L be a line in the same plane such that L does not intersect the interior of R, as shown in Figure 7.63. If r is the distance between the centroid of R and the line, then the volume V of the solid of revolution formed by revolving R about the line is

$$V = 2\pi rA$$

where A is the area of R. (Note that $2\pi r$ is the distance traveled by the centroid as the region is revolved about the line.)

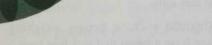


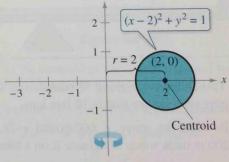
EXAMPLE 7 Finding Volume by the Theorem of Pappus

Find the volume of the torus shown in Figure 7.64(a), which was formed by revolving the circular region bounded by

$$(x-2)^2 + y^2 = 1$$

about the y-axis, as shown in Figure 7.64(b).





(a) Figure 7.64