MTH 174 7.6 Handout

Force = (mass)(acceleration).

. below lists some commonly used measures of mass and force, togeh
version factors. '

System of Measure
Measurement | of Mass Measure of Force
U.s. Slug Pound = (slug)(ft/sec?)

International | Kilogram | Newton = (kilogram)(m/sec’)

C-G-S Gram Dyne = (gram)(cm/sec?)

Conversions:
1 pound = 4.448 newtons 1 slug = 14.59 kilograms
Inewton = (02248 pound 1 kilogram = 0.06852 slu8

1 :yne = 0.000002248 pound 1 gram = 0.00006852 slug
yne = 0.00001 newton 1 foot = 0.3048 meter

Mass on the Surface of Earth

Find the mass (in slugs) of an object whose weight at sea level is 1 pound
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Moments and Center of Mass: One-Dimensional Sysm

Let the point masses m,, m,, . . ., m, be located at x,, x,,

S X
1. The moment about the origin is

My=mx +myx, +- - -+ mx,
2. The center of mass is
M,

X =—
m

wherem = m; + m, + - - - + m, is the total mass of the system-
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m, m, my My
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Figure 7.55
Y (% y,)

In a two-dimensional system, there is
a moment about the y-axis M, and a
Moment about the x-axis M,.

Figure 7,56
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Moment and Center of Mass: Two-Dimensional System

Let the point masses m,, m,, . . ., m, be located at (x1, Y1) (x5 ¥2)s -

1. The moment about the y-axis is
M, = mx; + myx, + . .. mX,

2. The moment about the x-axis is
M,=my, + my,*...mY,
3. The center of mass (%, ) (or center of gravity) is

M M
f=— and y=—
m m
where
m=m,+m2+...+m,,

is the total mass of the system.

v (e Y-
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Igzg E' »[:' The Center of Mass of a Two-Dimensional System

Find the center of mass of a system of point masses m, = 6, m, = 3, m; = 2, and
m, = 9, located at

(3,-2), (0,0), (=5,3), and (4,2)

as shown in Figure 7.57.

y
=2 1
"13@ 3+ m,=9
(-5,3) 21
©0,0! Tm,=3 42
| | | ] [ Nl | 1 | | » x
i SRS ST T UG %, ¢ D T T T
Ss-4-3-2-1,1 12 3 4
B ml=6
5 @
-3+ (33_2)
Figure 7.57
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Planar lamina of uniform density ?

Figure 7.59

o,

Moments and Center of Mass of a Planar Lamina \.

Let f and g be continuous functions such that f(x) > g(x) on [a, b, ang
consider the planar lamina of uniform density p bounded by the graphs of

y =f(X),y = g(x), anda < x < b.

1. The moments about the x- and y-axes are

=p | | 2250 ) — gy ae
M=o [ A1) - ol

M
2. The center of mass ) is given by ¥ = — apnd y = M—", where
m m

m = p J2[f(x) = g(x)] dx is the mass of the lamina.
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The Center of Mass of a Planar Lamina

« « « o> See LarsonCalculus.com for an interactive version of this type of example.

Find the center of mass of the lamina of uniform density p bounded by the graph of
f(x) = 4 — x* and the x-axis.

Center of mass:

(0.5)

The center of mass is the balancing
point.

Figure 7.60
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Figure 7.61
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The Centroid of a Simple Plane Region

Find the centroid of the region shown in Figure 7.62(a).

(b) The ce nd ) ‘
) 1he centroids of the three rectangles

Figure 7.62
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THEOREM 7.1 The Theorem of Pappus

Let R be a region in a plane and let L be a line in the same plane such that L
does not intersect the interior of R, as shown in Figure 7.63. If r is the distance
between the centroid of R and the line, then the volume V of the solid of
revolution formed by revolving R about the line is

V =27mrA

where A is the area of R. (Note that 27rr is the distance traveled by the centroid
as the region is revolved about the line.)
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Finding Volume by the Theorem of Pappus

Find the volume of the torus shown in Figure 7.64(a), which was formed by revolving
the circular region bounded by

(x.— 2P + 92 = 1

about the y-axis, as shown in Figure 7.64(b).

Centroid

Torus w &

(a) ®)
Figure 7.64
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