Definitions of Increasing and Decreasing Functions

A function f is **increasing** on an interval when, for any two numbers x_1 and x_2 in the interval, $x_1 < x_2$ implies $f(x_1) < f(x_2)$.

A function f is **decreasing** on an interval when, for any two numbers x_1 and x_2 in the interval, $x_1 < x_2$ implies $f(x_1) > f(x_2)$.

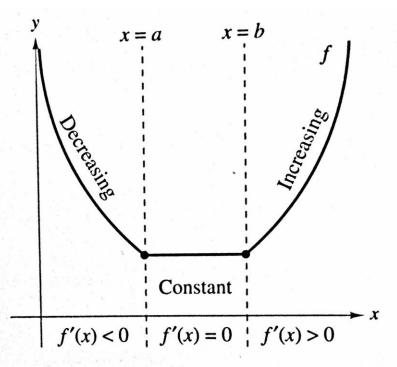
THEOREM 3.5 Test for Increasing and Decreasing Functions

Let f be a function that is continuous on the closed interval [a, b] and differentiable on the open interval (a, b).

1. If f'(x) > 0 for all x in (a, b), then f is increasing on [a, b].

2. If f'(x) < 0 for all x in (a, b), then f is decreasing on [a, b].

3. If f'(x) = 0 for all x in (a, b), then f is constant on [a, b].



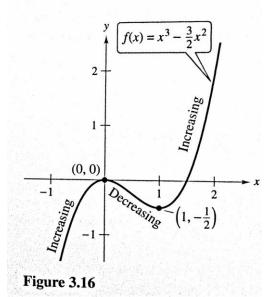
The derivative is related to the slope of a function.

Figure 3.15

EXAMPLE

Intervals on Which f Is Increasing or Decreasing

Find the open intervals on which $f(x) = x^3 - \frac{3}{2}x^2$ is increasing or decreasing.



GUIDELINES FOR FINDING INTERVALS ON WHICH A FUNCTION IS INCREASING OR DECREASING

Let f be continuous on the interval (a, b). To find the open intervals on which f is increasing or decreasing, use the following steps.

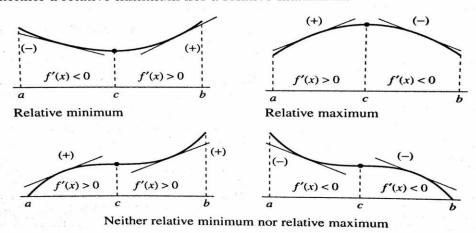
- 1. Locate the critical numbers of f in (a, b), and use these numbers to determine test intervals.
- 2. Determine the sign of f'(x) at one test value in each of the intervals.
- 3. Use Theorem 3.5 to determine whether f is increasing or decreasing on each interval.

These guidelines are also valid when the interval (a, b) is replaced by an interval of the form $(-\infty, b)$, (a, ∞) , or $(-\infty, \infty)$.

THEOREM 3.6 The First Derivative Test

Let c be a critical number of a function f that is continuous on an open interval I containing c. If f is differentiable on the interval, except possibly at c, then f(c) can be classified as follows.

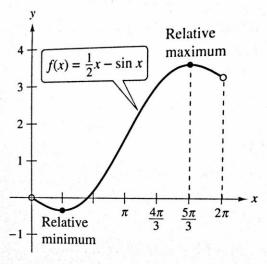
- 1. If f'(x) changes from negative to positive at c, then f has a relative minimum at (c, f(c)).
- 2. If f'(x) changes from positive to negative at c, then f has a relative maximum at (c, f(c)).
- 3. If f'(x) is positive on both sides of c or negative on both sides of c, then f(c) is neither a relative minimum nor a relative maximum.



EXAMPLES

Applying the First Derivative Test

Find the relative extrema of $f(x) = \frac{1}{2}x - \sin x$ in the interval $(0, 2\pi)$.



A relative minimum occurs where f changes from decreasing to increasing, and a relative maximum occurs where f changes from increasing to decreasing.

Figure 3.19

Applying the First Derivative Test

Find the relative extrema of $f(x) = (x^2 - 4)^{2/3}$.

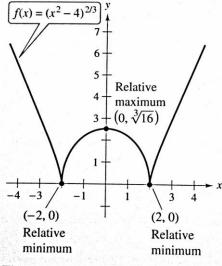
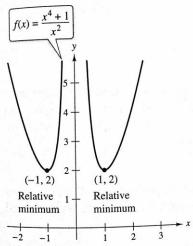


Figure 3.20

Applying the First Derivative Test

•••• See LarsonCalculus.com for an interactive version of this type of exam

Find the relative extrema of $f(x) = \frac{x^4 + 1}{x^2}$.



x-values that are not in the domain of f, as well as critical numbers, determine test intervals for f'.

Figure 3.21

The Path of a Projectile

Neglecting air resistance, the path of a projectile that is propelled at an angle θ is

$$y = \frac{g \sec^2 \theta}{2v_0^2} x^2 + (\tan \theta)x + h, \quad 0 \le \theta \le \frac{\pi}{2}$$

where y is the height, x is the horizontal distance, g is the acceleration due to gravity, v_0 is the initial velocity, and h is the initial height. (This equation is derived in Section 12.3.) Let g = -32 feet per second per second, $v_0 = 24$ feet per second, and h = 9 feet. What value of θ will produce a maximum horizontal distance?

79. Trachea Contraction Coughing forces the trachea (windpipe) to contract, which affects the velocity v of the air passing through the trachea. The velocity of the air during coughing is

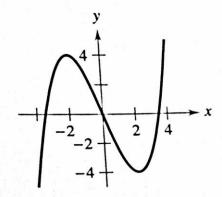
$$v = k(R - r)r^2, \quad 0 \le r < R$$

where k is a constant, R is the normal radius of the trachea, and r is the radius during coughing. What radius will produce the maximum air velocity?

TRY:

Using a Graph In Exercises 3–8, use the graph to estimate the open intervals on which the function is increasing or decreasing. Then find the open intervals analytically.

$$5. \ y = \frac{x^3}{4} - 3x$$



Intervals on Which f is increasing or Decreasing In Exercises 9–16, identify the open intervals on which the function is increasing or decreasing.

13.
$$f(x) = \sin x - 1$$
, $0 < x < 2\pi$

Applying the First Derivative Test In Exercises 17–40, (a) find the critical numbers of f (if any), (b) find the open interval(s) on which the function is increasing or decreasing, (c) apply the First Derivative Test to identify all relative extrema, and (d) use a graphing utility to confirm your results.

23.
$$f(x) = (x - 1)^2(x + 3)$$
 24. $f(x) = (x + 2)^2(x - 1)$ **25.** $f(x) = \frac{x^5 - 5x}{5}$ **26.** $f(x) = x^4 - 32x + 4$

Solutions:

$$5. \ y = \frac{x^3}{4} - 3x$$

From the graph, y is increasing on $(-\infty, -2)$ and $(2, \infty)$, and decreasing on (-2, 2).

Analytically,
$$y' = \frac{3x^2}{4} - 3 = \frac{3}{4}(x^2 - 4) = \frac{3}{4}(x - 2)(x + 2)$$

Critical numbers: $x = \pm 2$

Test intervals:	$-\infty < x < -2$	-2 < x < 2	2 < x < ∞
Sign of y':	y' > 0	y' < 0	y' > 0
Conclusion:	Increasing	Decreasing	Increasing

13.
$$f(x) = \sin x - 1$$
, $0 < x < 2\pi$
 $f'(x) = \cos x$

Critical numbers: $x = \frac{\pi}{2}, \frac{3\pi}{2}$

Test intervals:	$0 < x < \frac{\pi}{2}$	$\frac{\pi}{2} < x < \frac{3\pi}{2}$	$\frac{3\pi}{2} < x < 2\pi$
Sign of $f'(x)$:	f' > 0	f' < 0	f' > 0
Conclusion:	Increasing	Decreasing	Increasing

Increasing on: $\left(0, \frac{\pi}{2}\right), \left(\frac{3\pi}{2}, 2\pi\right)$

Decreasing on: $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$

23. (a)
$$f(x) = (x-1)^2(x+3) = x^3 + x^2 - 5x + 3$$

 $f'(x) = 3x^2 + 2x - 5 = (x-1)(3x+5)$

Critical numbers: $x = 1, -\frac{5}{3}$

)	Test intervals:	$-\infty < x < -\frac{5}{3}$	-5/3 < x < 1	$1 < x < \infty$
	Sign of f' :	f' > 0	f' < 0	f' > 0
	Conclusion:	Increasing	Decreasing	Increasing

Increasing on: $\left(-\infty, -\frac{5}{3}\right)$ and $\left(1, \infty\right)$

Decreasing on: $\left(-\frac{5}{3}, 1\right)$

(c) Relative maximum: $\left(-\frac{5}{3}, \frac{256}{27}\right)$

Relative minimum: (1, 0)

24. (a)
$$f(x) = (x + 2)^2(x - 1)$$

 $f'(x) = 3x(x + 2)$

Critical numbers: x = -2, 0

(b)	Test intervals:	$-\infty < x < -2$	-2 < x < 0	$0 < x < \infty$
	Sign of $f'(x)$:	f' > 0	f' < 0	f' > 0
	Conclusion:	Increasing	Decreasing	Increasing

Increasing on: $(-\infty, -2)$, $(0, \infty)$

Decreasing on: (-2, 0)

(c) Relative maximum: (-2, 0)

Relative minimum: (0, -4)

25. (a)
$$f(x) = \frac{x^5 - 5x}{5}$$

 $f'(x) = x^4 - 1$

Critical numbers: x = -1, 1

(b)	Test intervals:	$-\infty < x < -1$	-1 < x < 1	$1 < x < \infty$
	Sign of $f'(x)$:	f' > 0	f' < 0	f' > 0
	Conclusion:	Increasing	Decreasing	Increasing

Increasing on: $(-\infty, -1)$, $(1, \infty)$

Decreasing on: (-1, 1)

(c) Relative maximum: $\left(-1, \frac{4}{5}\right)$ Relative minimum: $\left(1, -\frac{4}{5}\right)$

26. (a)
$$f(x) = x^4 - 32x + 4$$

 $f'(x) = 4x^3 - 32 = 4(x^3 - 8)$

Critical number: x = 2

(b)	Test intervals:	$-\infty < x < 2$	$2 < x < \infty$
	Sign of $f'(x)$:	f' < 0	f' > 0
	Conclusion:	Decreasing	Increasing

Increasing on: $(2, \infty)$

Decreasing on: $(-\infty, 2)$

(c) Relative minimum: (2, -44)