Right Triangle Definitions of Trigonometric Functions

See Figure 4.30. The six trigonometric functions of the acute angle θ are defined as follows:

$$\sin \theta = \frac{\text{length of side opposite angle } \theta}{\text{length of hypotenuse}} = \frac{a}{c} \qquad \qquad \csc \theta = \frac{\text{length of hypotenuse}}{\text{length of side adjacent to angle } \theta} = \frac{c}{a}$$

$$\cos \theta = \frac{\text{length of side adjacent to angle } \theta}{\text{length of hypotenuse}} = \frac{b}{c} \qquad \qquad \sec \theta = \frac{\text{length of hypotenuse}}{\text{length of side adjacent to angle } \theta} = \frac{c}{b}$$

$$\tan \theta = \frac{\text{length of side opposite angle } \theta}{\text{length of side adjacent to angle } \theta} = \frac{b}{a}$$

$$\cot \theta = \frac{\text{length of side adjacent to angle } \theta}{\text{length of side adjacent to angle } \theta} = \frac{b}{a}$$

Table 4.2 Trigonometric Functions of Special Angles

$$\theta \qquad 30^{\circ} = \frac{\pi}{6} \qquad 45^{\circ} = \frac{\pi}{4} \qquad 60^{\circ} = \frac{\pi}{3}$$

$$\sin \theta \qquad \frac{1}{2} \qquad \frac{\sqrt{2}}{2} \qquad \frac{\sqrt{3}}{2}$$

$$\cos \theta \qquad \frac{\sqrt{3}}{2} \qquad \frac{1}{2}$$

$$\tan \theta \qquad \frac{\sqrt{3}}{3} \qquad 1 \qquad \sqrt{3}$$

Cofunction Identities

The value of a trigonometric function of θ is equal to the cofunction of the complement of θ . Cofunctions of complementary angles are equal.

$$\sin \theta = \cos(90^{\circ} - \theta)$$
 $\cos \theta = \sin(90^{\circ} - \theta)$
 $\tan \theta = \cot(90^{\circ} - \theta)$ $\cot \theta = \tan(90^{\circ} - \theta)$
 $\sec \theta = \csc(90^{\circ} - \theta)$ $\csc \theta = \sec(90^{\circ} - \theta)$

If θ is in radians, replace 90° with $\frac{\pi}{2}$.

7

EXAMPLE 6 Problem Solving Using an Angle of Elevation

Sighting the top of a building, a surveyor measured the angle of elevation to be 22°. The transit is 5 feet above the ground and 300 feet from the building. Find the building's height.

Check Point 6 The irregular blue shape in Figure 4.39 represents a lake. The distance across the lake, a, is unknown. To find this distance, a surveyor took the measurements shown in the figure. What is the distance across the lake? 333.9 yd

FIGURE 4.39

Example 8 Photography from a spy plane

In the late 1950s, the Soviets labored to develop a missile that could stop the U-2 spy plane. On May 1, 1960, Nikita S. Khrushchev announced to the world that the Soviets had shot down Francis Gary Powers while Powers was photographing the Soviet Union from a U-2 at an altitude of 14 miles. How wide a path on the earth's surface could Powers see from that altitude? (Use 3950 miles as the earth's radius.)

EXAMPLE 7 Determining the Angle of Elevation

A building that is 21 meters tall casts a shadow 25 meters long. Find the angle of elevation of the sun to the nearest degree.

· Th	the	th	0	in	tar	h cp/o	01	6.	10	76	8	5	66	to	13	a of	29/6	100	ngth	9 (9.
Reco	.11	the			me		for		SI	1						th	4				
		5	=	0	c			(0	is	5	10	1	d.	ons.)						
				-	5 =	9	1.6	0 0	180	و م			3	950	Om	105	=				
						=	6	, ,	2		100			-							1