Definition of Antiderivative

A function F is an **antiderivative** of f on an interval I when F'(x) = f(x) for all x in I.

THEOREM 4.1 Representation of Antiderivatives

If F is an antiderivative of f on an interval I, then G is an antiderivative of f on the interval I if and only if G is of the form G(x) = F(x) + C, for all x in I where C is a constant.

EXAMPLE 1

Solving a Differential Equation

Find the general solution of the differential equation y' = 2.

Functions of the form y = 2x + CFigure 4.1

Basic Integration Rules

Differentiation Formula

Differentiation Formula
$$\frac{d}{dx}[C] = 0$$

$$\frac{d}{dx}[kx] = k$$

$$\frac{d}{dx}[kf(x)] = kf'(x)$$

$$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$$

$$\frac{d}{dx}[x^n] = nx^{n-1}$$

$$\frac{d}{dx}[\sin x] = \cos x$$

$$\frac{d}{dx}[\cos x] = -\sin x$$

$$\frac{d}{dx}[\tan x] = \sec^2 x$$

$$\frac{d}{dx}[\cot x] = -\csc^2 x$$

$$\frac{d}{dx}[\csc x] = -\csc x \cot x$$

 $\frac{d}{dx}[\sec x] = \sec x \tan x$

Integration Formula

Integration Formula
$$\int 0 dx = C$$

$$\int k dx = kx + C$$

$$\int kf(x) dx = k \int f(x) dx$$

$$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$$
Power Rule
$$\int \cos x dx = \sin x + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int \sec^2 x dx = \tan x + C$$

$$\int \sec x \tan x dx = \sec x + C$$

$$\int \csc^2 x dx = -\cot x + C$$

$$\int \csc^2 x dx = -\cot x + C$$

$$\int \csc^2 x dx = -\cot x + C$$

Describing Antiderivatives

$$\int 3x \, dx = 3 \int x \, dx$$

Constant Multiple Rule

•••• See LarsonCal

Original Integral

$$\mathbf{a.} \quad \int \frac{1}{x^3} \, dx$$

b.
$$\int \sqrt{x} \, dx$$

$$\mathbf{c.} \int 2\sin x \, dx$$

EXAMPLE 5

Rewriting Before Integrating

$$\int \frac{x+1}{\sqrt{x}} dx = \int \left(\frac{x}{\sqrt{x}} + \frac{1}{\sqrt{x}}\right) dx$$

Rewrite as tv

EXAMPLE 6

Rewriting Before Integrating

$$\int \frac{\sin x}{\cos^2 x} \, dx = \int \left(\frac{1}{\cos x}\right) \left(\frac{\sin x}{\cos x}\right) \, dx$$

Rewrite as a product.

EXAMPLE 7

F

Original Integral

$$\mathbf{a.} \ \int \frac{2}{\sqrt{x}} \, dx$$

b.
$$\int (t^2+1)^2 dt$$

$$\mathbf{c.} \quad \int \frac{x^3 + 3}{x^2} \, dx$$

d.
$$\int \sqrt[3]{x}(x-4) \, dx$$

[EXAMPLE 8] Finding a Particular Solution

Find the general solution of

$$F'(x) = \frac{1}{x^2}, \quad x > 0$$

and find the particular solution that satisfies the initial condition F(1) = 0.

EXAMPLE 9 | Solving a Vertical Motion Problem

A ball is thrown upward with an initial velocity of 64 feet per second from an initial height of 80 feet.

- a. Find the position function giving the height s as a function of the time t.
- b. When does the ball hit the ground?

Solution

- 51. Tree Growth An evergreen nursery usually sells a certain type of shrub after 6 years of growth and shaping. The growth rate during those 6 years is approximated by dh/dt = 1.5t + 5, where t is the time in years and h is the height in centimeters. The seedlings are 12 centimeters tall when planted (t = 0).
 - (a) Find the height after t years.
 - (b) How tall are the shrubs when they are sold?

52. Population Growth The rate of growth dP/dt of a population of bacteria is proportional to the square root of t, where P is the population size and t is the time in days $(0 \le t \le 10)$. That is,

$$\frac{dP}{dt} = k\sqrt{t}.$$

The initial size of the population is 500. After 1 day the population has grown to 600. Estimate the population after 7 days.

60. Escape Velocity The minimum velocity required for an object to escape Earth's gravitational pull is obtained from the solution of the equation

$$\int v \, dv = -GM \int \frac{1}{y^2} \, dy$$

where v is the velocity of the object projected from Earth, y is the distance from the center of Earth, G is the gravitational constant, and M is the mass of Earth. Show that v and y are related by the equation

$$v^2 = v_0^2 + 2GM \left(\frac{1}{y} - \frac{1}{R} \right)$$

where v_0 is the initial velocity of the object and R is the radius of Earth.

Rewriting Before Integrating In Exercises 7-10, complete the table to find the indefinite integral.

Original Integral	Rewrite	Integrate	Simplify
$7. \int \sqrt[3]{x} dx$			
$8. \int \frac{1}{4x^2} dx$			
$9. \int \frac{1}{x\sqrt{x}} dx$			and and and
10. $\int \frac{1}{(3x)^2} dx$			**************************************

	<u>Given</u> 1. ∫∛x dx	$\frac{Rewrite}{\int x^{1/3} dx}$	$\frac{Integrate}{\frac{x^{4/3}}{4/3} + C}$	$\frac{Simplify}{\frac{3}{4}x^{4/3}} + C$
	$8. \int \frac{1}{4x^2} dx$	$\frac{1}{4}\int x^{-2} \ dx$	$\frac{1}{4} \frac{x^{-1}}{-1} + C$	$-\frac{1}{4x}+C$
Contract of the last of the la	$9. \int \frac{1}{x\sqrt{x}} dx$	$\int x^{-3/2} \ dx$	$\frac{x^{-1/2}}{-1/2}+C$	$-\frac{2}{\sqrt{x}} + C$
	$10. \int \frac{1}{\left(3x\right)^2} dx$	$\frac{1}{9}\int x^{-2}\ dx$	$\frac{1}{9}\left(\frac{x^{-1}}{-1}\right) + C$	$\frac{-1}{9x} + C$