THEOREM 4.9 The Fundamental Theorem of Calculus

If a function f is continuous on the closed interval [a, b] and F is an antiderivative of f on the interval [a, b], then

$$\int_a^b f(x) \ dx = F(b) - F(a).$$

GUIDELINES FOR USING THE FUNDAMENTAL THEOREM OF CALCULUS

- 1. Provided you can find an antiderivative of f, you now have a way to evaluate a definite integral without having to use the limit of a sum.
- 2. When applying the Fundamental Theorem of Calculus, the notation shown below is convenient.

$$\int_a^b f(x) dx = F(x) \bigg]_a^b = F(b) - F(a)$$

For instance, to evaluate $\int_1^3 x^3 dx$, you can write

$$\int_{1}^{3} x^{3} dx = \frac{x^{4}}{4} \Big]_{1}^{3} = \frac{3^{4}}{4} - \frac{1^{4}}{4} = \frac{81}{4} - \frac{1}{4} = 20.$$

3. It is not necessary to include a constant of integration C in the antiderivative.

$$\int_{a}^{b} f(x) dx = \left[F(x) + C \right]_{a}^{b} = \left[F(b) + C \right] - \left[F(a) + C \right] = F(b) - F(a)$$

EXAMPLE 1 Evaluating a Definite Integral

•••• See LarsonCalculus.com for an interactive version of this type of exam,

Evaluate each definite integral.

a.
$$\int_{1}^{2} (x^2 - 3) dx$$

b.
$$\int_{1}^{4} 3\sqrt{x} \, dx$$

a.
$$\int_{1}^{2} (x^2 - 3) dx$$
 b. $\int_{1}^{4} 3\sqrt{x} dx$ **c.** $\int_{0}^{\pi/4} \sec^2 x dx$

EXAMPLE 2A Definite Integral Involving Absolute Value

Evaluate $\int_0^2 |2x - 1| dx.$

The definite integral of y on [0, 2] is $\frac{5}{2}$. Figure 4.28

EXAMPLE 3 Using the Fundamental Theorem to Find Area

Find the area of the region bounded by the graph of

$$y = 2x^2 - 3x + 2$$

the x-axis, and the vertical lines x = 0 and x = 2, as shown in Figure 4.29.

The area of the region bounded by the graph of y, the x-axis, x = 0, and x = 2 is $\frac{10}{3}$.

Figure 4.29

THEOREM 4.10 Mean Value Theorem for Integrals

If f is continuous on the closed interval [a, b], then there exists a number c in the closed interval [a, b] such that

$$\int_a^b f(x) \ dx = f(c)(b-a).$$

Definition of the Average Value of a Function on an Interval

If f is integrable on the closed interval [a, b], then the average value of f on the interval is

$$\frac{1}{b-a}\int_a^b f(x)\ dx.$$

See Figure 4.32.

EXAMPLE 4 Finding the Average Value of a Function

Find the average value of $f(x) = 3x^2 - 2x$ on the interval [1, 4].

EXAMPLE 5 The Speed of Sound

At different altitudes in Earth's atmosphere, sound travels at different speeds. The speed of sound s(x) (in meters per second) can be modeled by

$$s(x) = \begin{cases} -4x + 341, & 0 \le x < 11.5\\ 295, & 11.5 \le x < 22\\ \frac{3}{4}x + 278.5, & 22 \le x < 32\\ \frac{3}{2}x + 254.5, & 32 \le x < 50\\ -\frac{3}{2}x + 404.5, & 50 \le x \le 80 \end{cases}$$

where x is the altitude in kilometers (see Figure 4.34). What is the average speed of sound over the interval [0, 80]?

Speed of sound depends on altitude.

Figure 4.34

9

The Second Fundamental Theorem of Calculus

Earlier you saw that the definite integral of f on the interval [a, b] was defined using the constant b as the upper limit of integration and x as the variable of integration. However, a slightly different situation may arise in which the variable x is used in the upper limit of integration. To avoid the confusion of using x in two different ways, t is temporarily used as the variable of integration. (Remember that the definite integral is *not* a function of its variable of integration.)

The Definite Integral as a Number The Definite Integral as a Function of x

EXAMPLE 6

The Definite Integral as a Function

Evaluate the function

$$F(x) = \int_0^x \cos t \, dt$$

at
$$x = 0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}$$
, and $\frac{\pi}{2}$.

THEOREM 4.11 The Second Fundamental Theorem of Calculus

If f is continuous on an open interval I containing a, then, for every x in the interval,

$$\frac{d}{dx}\left[\int_{a}^{x} f(t) dt\right] = f(x).$$

EXAMPLE 7 The Second Fundamental Theorem of Calculus

Evaluate
$$\frac{d}{dx} \left[\int_0^x \sqrt{t^2 + 1} \, dt \right]$$
.

EXAMPLE 8 The Second Fundamental Theorem of Calculus

Find the derivative of $F(x) = \int_{\pi/2}^{x^3} \cos t \, dt$.

THEOREM 4.12 The Net Change Theorem

The definite integral of the rate of change of quantity F'(x) gives the total change, or **net change**, in that quantity on the interval [a, b].

$$\int_{a}^{b} F'(x) dx = F(b) - F(a)$$
 Net change of F

EXAMPLE 9

Using the Net Change Theorem

A chemical flows into a storage tank at a rate of (180 + 3t) liters per minute, where t is the time in minutes and $0 \le t \le 60$. Find the amount of the chemical that flows into the tank during the first 20 minutes.

EXAMPLE 10 Solving a Particle Motion Problem

The velocity (in feet per second) of a particle moving along a line is

$$v(t) = t^3 - 10t^2 + 29t - 20$$

where t is the time in seconds.

- **a.** What is the displacement of the particle on the time interval $1 \le t \le 5$?
- **b.** What is the total distance traveled by the particle on the time interval $1 \le t \le 5$?