MTH 173 4.4 Handout

THEOREM 4.9 The Fundamental Theorem of Calculus

If a function f is continuous on the closed interval [a, b] and F is an
antiderivative of f on the interval [a, b], then

r f(x) dx = F(b) — Fl(a).

)

GUIDELINES FOR USING THE FUNDAMENTAL THEOREM OF
CALCULUS

1. Provided you can find an antiderivative of f, you now have a way to evaluate
a definite integral without having to use the limit of a sum.

2. When applying the Fundamental Theorem of Calculus, the notation shown
below is convenient.

[ " 0 dx = F)| = F) - F@)

For instance, to evaluate [ 2 x3 dx, you can write
3 473 4 4
X 3 1 81 1
[x3dx=—] =— ——=——-—-=20.
1

3. It is not necessary to include a constant of integration C in the antiderivative.

f " ) dx = [F(x) +cf =170) + 1~ 7@ + 1 - F) - ol |
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{EXAMPLE?E Evaluating a Definite Integral

“ ++ <> See LarsonCalculus.com for an interactive version of this type of exam,

Evaluate each definite integral.

2 4 /4
a. j (x2—3)dx b f 3Vxdx  c f sec? x dx
1 0

1
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{EXAMPLE 2}

A Definite Integral Involving Absolute Value

2
Evaluate J |2x — 1] dx.
0

Tfle definite integral of y on [0, 2] is 2
Figure 4,28
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EXAMPLE "3“;‘ Using the Fundamental Theorem to Find Area

Find the area of the region bounded by the graph of
y=2x?>—-3x+2

the x-axis, and the vertical lines x = 0 and x = 2, as shown in Figure 4.29.

{

The area of the region bounded by the
graph of y, the x-axis, x = 0, and
X=2is ?.

Figure 4.29
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THEOREM 4.10 Mean Value Theorem for Integrals

If f is continuous on the closed interval [a, b], then there exists a number c in
the closed interval [a, b] such that

be(x) dx = f(c)(b — a). J

Definition of the Average Value of a Function on an Interval

If fis integrable on the closed interval [a, b], then the average value of f on the
interval is

b
E—izj f(x) dx. See Figure 4.32.

.EXAMPLE 4}

Finding the Average Value of a Function

Find the average value of f(x) = 3x2 — 2x on the interval [1, 4].
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The Speed of Sound

At different altitudes in Earth’s atmosphere, sound travels at different speeds. The speed
of sound s(x) (in meters per second) can be modeled by

—4x + 341, 0<x<1l5

295, 115<x<22
s(x) = {3x + 2785, 2 <x<32

3x + 2545, 32 <x<50

-3¢ + 4045, 50 < x < 80

where x is the altitude in kilometers (see Figure 4.34). What is the average speed of

-
A
|

g sound over the interval [0, 80]?

N
330 \ /\
T\ TR

300
| A
290 \\

280

Speed of sound (in m/sec)

w

Altitude (in km)

Speed of sound depends on altitude.
Figure 4.34
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The Second Fundamental Theorem of Calculus

Earlier you saw that the definite integral of f on the interval [a, b] was defined using the
constant b as the upper limit of integration and x as the variable of integration. However,
a slightly different situation may arise in which the variable x is used in the upper limit
of integration. To avoid the confusion of using x in two different ways, ¢ is temporarily
used as the variable of integration. (Remember that the definite integral is not a
function of its variable of integration.)

The Definite Integral as a Number The Definite Integral as a Function of x

b "X
f 1) d PG = f £0) e

a

fisa f _is a
Constant | | function of x. function of .

i nanin Gt

.EXAMPLE 6} The Definite Integral as a Function

Evaluate the function

F(x) = | costdt
0
T T T
atx = 0, 64’ 3,and >

7|Page



MTH 173 4.4 Handout

—

THEOREM 4.11 The Second Fundamental Theorem of Calculus

If fis continuous on an open interval I containing a, then, for every x in the
interval,

{3[ f £ dt] = £().

e T———

T

“"'E')"(H'AMP'LEN;IE The Second Fundamental Theorem of Calculus

Evaluate % [I V2 +1 dt].
0

P SN BN vy

EXAMPLE 8;

The Second Fundamental Theorem of Calculus

x3

Find the derivative of F(x) = f cos t dt.
/2
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THEOREM 4.12 The Net Change Theorem N

The definite integral of the rate of change of quantity F'(x) gives the total
change, or net change, in that quantity on the interval [a, b].

b
f F'(x) dx = F(b) — F(a) Net change of F

T ko e T i

i "'XAIVIVL] Using the Net Change Theorem

A chemical flows into a storage tank at a rate
of (180 + 3t) liters per minute, where ¢ is the
time in minutes and 0 < ¢ < 60. Find the
amount of the chemical that flows into the
tank during the first 20 minutes.

IR TRRH IR | s0ai il
T
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EXAMPLE 10 Solving a Particle Motion Problem

The velocity (in feet per second) of a particle moving along a line is
v(t) = £ — 102 + 29t — 20
where ¢ is the time in seconds.

a. What is the displacement of the particle on the time interval 1 < ¢ < 52
b. What is the total distance traveled by the particle on the time interval 1 < ¢ < 59
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